Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) sáng giải
b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm
a) ĐK: \(x,y\ne-1\)
\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)
(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3)
(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)
\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)
Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)
\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)
Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 )
tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)
b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)
lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được:
\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)
\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm
Do x, y, z khác 1 và thỏa mãn xyz = 1 nên ta có thế đặt: \(x=\frac{a^2}{bc};y=\frac{b^2}{ca};z=\frac{c^2}{ab}\)
với \(\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\ne0\)
Khi đó BĐT cần chứng minh được viết lại như sau:
\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ca\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)
Áp dụng BĐT Bunhiacopxki ta có: \(\left[\text{∑}_{cyc}\left(a^2-bc\right)^2\right]\left[\text{∑}_{cyc}\frac{a^4}{\left(a^2-bc\right)^2}\right]\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\text{∑}_{cyc}\frac{a^4}{\left(a^2-bc\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2}\)
Đến đây, ta cần chứng minh: \(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2}\ge1\left(^∗\right)\)
Thật vậy. \(\left(^∗\right)\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ca\right)^2+\left(c^2-ab\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge a^4+b^4+c^4\)\(+\left(a^2b^2+b^2c^2+c^2a^2\right)-2\left(a^2bc+ab^2c+abc^2\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2\left(a^2bc+2ab^2c+2abc^2\right)\ge0\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\)*đúng*
Vậy bất đẳng thức được chứng minh.
Vì xyz=1 nên x,y,z \(\ne\)0. Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) thì ta có: \(abc=1\) và \(a,b,c\ne0,1\)
Khi đó BĐT cần chứng minh trở thành
\(\frac{1}{\left(1-a\right)^2}+\frac{1}{\left(1-b\right)^2}+\frac{1}{\left(1-c\right)^2}\ge1\Leftrightarrow\left(\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}\right)^2\)
\(-2\left[\frac{1}{\left(1-a\right)\left(1-b\right)}+\frac{1}{\left(1-b\right)\left(1-c\right)}+\frac{1}{\left(1-c\right)\left(1-a\right)}\right]\ge1\)
\(\Leftrightarrow\left[\frac{32\left(a+b+c\right)+ab+bc+ca}{ab+bc+ca-\left(a+b+c\right)}\right]^2-2\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca+ca-\left(a+b+c\right)}\right]\ge1\)
\(\Leftrightarrow\left[1+\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]^2-2\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]\ge1\)
\(\Leftrightarrow1+\left[\frac{3-\left(a+b+c\right)}{ab+bc+ca-\left(a+b+c\right)}\right]\ge1\)
\(pt\Leftrightarrow\hept{\begin{cases}\frac{1}{2}xy+\frac{3}{2}x+y+3=\frac{1}{2}xy+50\\\frac{1}{2}xy-x-y+2=\frac{1}{2}xy-32\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{3}{2}x+y=47\\-x-y=-34\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=26\\y=8\end{cases}}\)
Vậy pt có một nghiệm duy nhất (x;y) = (26;8).
Điều kiện: x , y và z \(\ne0\)
Từ (1), suy ra \(\frac{1}{xy}=2-\frac{1}{yz}-\frac{1}{z}\)
Thay vào 2 . Ta được:
\(\frac{2}{yz}\left(2-\frac{1}{yz}-\frac{1}{z}\right)-\frac{1}{z^2}=4\)
\(\Leftrightarrow\left(\frac{1}{yz}+\frac{1}{z}\right)^2+\left(\frac{1}{yz}-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y+1=0\\yz=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\left(-1\right)\\z=-\frac{1}{2}\end{cases}}\)
Kết hợp với (1), ta được nghiệm của hệ đã cho là:
\(\left(x;y;z\right)=\left(-\frac{1}{2};-1;-\frac{1}{2}\right)\)
P/s: Đáng nhẽ mình không giải bài này đâu vì nếu giải bác Thắng nói mình này nọ! Nhưng vì không thấy ai giải nên cũng giải thử xem sao vậy!
đây là bài bất IMO 2008
Đặt \(a=\frac{x}{x-1};b=\frac{y}{y-1};c=\frac{z}{z-1}\)từ đó giả thiết trở thành
\(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)Suy ra được : \(a+b+c-ab-bc-ca=1\)
Bài toán bây giờ trở thành chứng minh \(a^2+b^2+c^2\ge2\left(a+b+c-ab-bc-ca\right)-1\)
\(< =>\left(a+b+c-1\right)^2\ge0\)*đúng*
Vậy ta có điều phải chứng minh