Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\left(92-\frac{1}{9}-\frac{2}{10}-\frac{3}{10}-...-\frac{92}{100}\right):\left(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\right)\)
\(=\left(1-\frac{1}{9}+1-\frac{2}{10}+1-\frac{3}{11}+...+1-\frac{92}{100}\right)\div\frac{1}{5}\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)
\(=\left(\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}\right)\div\frac{1}{5}\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)
\(=8\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\div\frac{1}{5}\times\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)\)
\(=8\div\frac{1}{5}\)
\(=40\)
#~Will~be~Pens~#
a= (\(\frac{2}{5}\)+\(\frac{2}{9}\)+\(\frac{2}{11}\)\(\times\)\(\frac{5}{7}\)\(+\frac{7}{9}\)\(+\frac{7}{11}\)\()\)
Bài 2:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2003}{2004}\)
\(=\frac{1}{2004}\)
Ta có:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)
Đởn giản hết sẽ còn là:
\(\Rightarrow B=\frac{1}{2018}\)
\(80-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{80}{88}=\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{80}{88}\right)\)
\(=\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{88}=8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{88}\right)\)
\(\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{440}=\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{88}\right)\)
=>B=8:1/5=40