Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
=> \(\frac{5}{x}=\frac{1-2y}{8}\)
=> 5.8 = x(1 - 2y)
=> x(1 - 2y) = 40
=> x; (1 - 2y) \(\in\)Ư(40) = {1; -1; 2; -2; 4; -4; 5; -5; 8; -8; 10; -10; 20; -20; 40; -40}
Vì 1 - 2y là số lẽ => 1 - 2y \(\in\){1; -1; 5; -5}
Lập bảng :
1 - 2y | 1 | -1 | 5 | -5 |
x | 40 | -40 | 8 | -8 |
y | 0 | 1 | -2 | 3 |
Vậy ....
\(A^2=\frac{x+1}{x-3}=1+\frac{4}{x-3}\).
Để A nguyên thì A2 nguyên tức là \(\frac{4}{x-3}\) nguyên
Nên \(x-3\inƯ\left(4\right)=\left\{\pm1;\pm4\right\}\)
\(\Rightarrow x\in\left\{-1;2;4;7\right\}\)
Thay lần lượt các giá trị x vào xem với giá trị nào của x thì A2 là số chính phương là xong!
Ta có:
A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A \(\in\)Z <=> 4 \(⋮\)\(\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
<=>\(\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
Do \(\sqrt{x}\ge0\) => \(\sqrt{x}\in\left\{4;2;5;1;7\right\}\)
=> \(x\in\left\{16;4;25;1;49\right\}\)
Vậy ...
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1\)\(+\frac{4}{\sqrt{x}-3}\)
ĐKXĐ: \(x\in R\)
Vì \(x\in Z \Rightarrow \sqrt{x}-3\in Z\)
Để A là một số nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)
<=> \(4⋮\sqrt{x}-3\)
<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1,2,4,-1,-2,-4\right\}\)mà \(\sqrt{x}-3\ge-3\forall x\)
<=>\(\sqrt{x}\in\left\{4;5;7;2;1\right\}\)
<=> \(x\in\left\{16;25;49;4;1\right\}\)