Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)
\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)
\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)
Dấu = xảy ra khi x=2
=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)
Đặt t=(x+y+z)^2(t>=36)
=>P>=2t/t-6
Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)
\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)
=>f(t) đồng biến
=>f(t)>=f(36)=6/7
=>P>=12/7
Dấu = xảy ra khi x=y=z=2
\(P=\dfrac{6}{2xy+2yz+2zx}+\dfrac{2}{x^2+y^2+z^2}\ge\dfrac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=8+4\sqrt{3}\)
\(\sum\dfrac{x^2}{y^2+yz+z^2}\ge\sum\dfrac{x^2}{y^2+\dfrac{y^2+z^2}{2}+z^2}=\dfrac{2}{3}\sum\dfrac{x^2}{y^2+z^2}\ge\dfrac{2}{3}.\dfrac{3}{2}=1\) (BĐT cuối là BĐT Netsbitt)
Câu b là bài IMO 2001 USA, em có thể tìm thấy rất nhiều lời giải
Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=3\)
\(P=3a^2+b^2+3c^2\)
Biểu thức này chỉ có min, không có max
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{x^3}{y(x+z)}+\frac{y}{2}+\frac{x+z}{4}\geq \frac{3}{2}x$
Tương tự với các phân thức còn lại, cộng theo vế và rút gọn ta được:
$\Rightarrow P=\sum \frac{x^3}{y(x+z)}\geq \frac{x+y+z}{2}$
Tiếp tục áp dụng AM-GM:
$x+y\geq 2\sqrt{xy}$
$y+z\geq 2\sqrt{yz}$
$x+z\geq 2\sqrt{xz}$
$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1$
$\Rightarrow P\geq \frac{1}{2}$
Vậy $P_{\min}=\frac{1}{2}$ khi $x=y=z=\frac{1}{3}$
\(\dfrac{x^3}{y\left(x+z\right)}+\dfrac{y}{2}+\dfrac{x+z}{4}\ge\dfrac{3x}{2}\)
Tương tự và cộng lại:
\(P+x+y+z\ge\dfrac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow P\ge\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
Cho x, y, z > 0 và xyz=1. CMR :
\(\dfrac{x^2}{1+y}+\dfrac{y^2}{1+z}+\dfrac{z^2}{1+z}\ge\dfrac{3}{2}\)
Đề sai nhé, \(\dfrac{z^2}{x+1}\) mới đúng nha
\(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3}\left(\text{Svácxơ}\right)\)
\(\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Ta có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow x+y+z+3\le2\left(x+y+z\right)\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
$\Rightarrow x+y+z\geq 3$
Áp dụng BĐT AM-GM:
$\frac{y^2}{2}+\frac{1}{2}\geq y$
$\frac{z^3}{3}+\frac{1}{3}+\frac{1}{3}\geq z$
$\Rightarrow P+\frac{7}{6}\geq x+y+z=3$
$\Rightarrow P\geq \frac{11}{6}$
Giá trị này đạt tại $x=y=z=1$