K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

a) A = (x+y) + |x+y| 

  • Nếu x+y >= 0 thì A = x+y+x+y = 2(x+y) chia hết cho 2
  • Nếu x+y <0 thì A = 0 cũng chia hết cho 2.

b) B = x - y - |x-y|

  • Nếu x-y >= 0 thì B = x-y-x+y = 0 chia hết cho 2
  • Nếu x-y < 0 thì B = x - y + x - y = 2*(x-y) chia hết cho 2.

c) C = x - y - z + ||x+y| + z|

  • Nếu |x+y| + z >= 0 thì C = x - y - z + |x+y| + z = x+y + |x+y| - 2y = A - 2y chia hết cho 2. (A là biểu thức A phần a)
  • Nếu |x+y| + z < 0 thì C = x - y - z - |x+y| - z = x+y + |x+y| - 2y - 2z - 2|x+y| = A - 2y -2z - 2|x+y| chia hết cho 2. (A là biểu thức A phần a).
17 tháng 6 2016

Thanks nhá, yêu bạn chóa

30 tháng 6 2016

a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B

Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.

b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)

2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi  a - 2b chia hết cho 5.

c) Tương tự: P = 3x2 - 10y = 13x2  - 10x2 - 10y = 13x2 - 10(x2 + y)

10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.

30 tháng 6 2016

b,Hướng dẫn: Xét A+b or A-B or mA+nB or mA-nB

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

25 tháng 9 2016

46452007

AH
Akai Haruma
Giáo viên
30 tháng 7 2017

Lời giải:

Biến đổi:

\(P=(x+y)(y+z)(x+z)+xyz=xy(x+y)+yz(y+z)+xz(z+x)+3xyz\)

\(\Leftrightarrow P=(x+y+z)(xy+yz+xz)\)

Với \(x+y+z\vdots 6\Rightarrow P\vdots 6(1)\)

Giả sử \(x,y,z\) đều là các số nguyên lẻ, khi đó \(x+y+z\) lẻ thì không thể chia hết cho $6$ (vô lý)

Do đó , phải tồn tại ít nhất một trong ba số \(x,y,z\) là số chẵn

\(\Rightarrow 3xyz\vdots 6(2)\)

Từ \((1),(2)\Rightarrow Q=P-3xyz\vdots 6\)

Ta có đpcm

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

8 tháng 9 2019

toi ko bit lam chi biet lam anh thui

8 tháng 9 2019

Mk cũng khá tốt về Anh nha bạn

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.