Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y,z thỏa mãn: x+y+z=xyz vf 1/x+1/y+1/z=13
Tính S=1/x^2+1/y^2+1/z^2
Thankssssss các bạn nha!
1/x + 1/y + 1/z = 13
<=> yz/x + xy/z + zx/y = 13
<=> xyz/x^2 + xyz/y^2 + xyz/z^2 = 13
<=> (x+y+z)(1/x^2 + 1/y^2 + 1/z^2) = 13
<=> 1/x^2 + 1/y^2 + 1/z^2 = 13/(x+y+z)
Hết ra rồi
\(x+y+z=0\)
⇔\(-x=y+z\)
⇔\(x^2=\left(y+z\right)^2\)
⇔\(x^2=y^2+2yz+z^2\)
⇔\(y^2+z^2-x^2=-2yz\)
Tương tự:
\(z^2+x^2-y^2=-2zx\)
\(x^2+y^2-z^2=-2xy\)
➞ S = \(\dfrac{1}{-2xy}+\dfrac{1}{-2yz}+\dfrac{1}{-2zx}=\dfrac{x+y+z}{-2xyz}=0\)
Vậy S = 0
Ta có:
\(x+y+z=0\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Rightarrow x^2+y^2+2xy=z^2\)
\(\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự ta được:
\(S=\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}=-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=0\)
Vậy S=0
\(\Leftrightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=...\\y=...\\z=...\end{matrix}\right.\)