K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Ta có:

x2​y + y2z + z2x + zx2 + yz2 + xy2 - x3 - y3 - z3 > 0

\(\Leftrightarrow\)(x2y + zx2 - x3) + (y2z + xy2 - y3) + (z2x + z2y - z3) > 0

\(\Leftrightarrow\)x2(y + z - x) + y2(z + x - y) + z2(x + y - z) > 0 (đúng)

Vì x,y,z là 3 cạnh của tam giác nên tổng 2 cạnh lớn hơn cạnh còng lại.

19 tháng 4 2017

mk mới học lớp 5 thôi nên ko giúp đc gì, thông cảm nha! chúc cậu học giỏi

AH
Akai Haruma
Giáo viên
12 tháng 4 2018

Lời giải:

Ta có:

\(x^2y+y^2z+z^2x+xy^2+yz^2+zx^2-x^3-y^3-z^3>0\)

\(\Leftrightarrow x^2(y+z-x)+y^2(x+z-y)+z^2(x+y-z)>0(*)\)

Do $x,y,z$ là độ dài ba cạnh tam giác nên:

\(\left\{\begin{matrix} x+y>z\\ y+z>x\\ z+x>y\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x+y-z>0\\ y+z-x>0\\ z+x-y>0\end{matrix}\right.\)

Do đó BĐT $(*)$ luôn đúng nên ta có đpcm.

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????

19 tháng 7 2017

Áp dụng holder ta có:

\(\left(1+1+1\right)\left(x^2y+y^2z+z^2x\right)\left(xy^2+yz^2+zx^2\right)\)

\(\ge\left(\sqrt[3]{x^4yz}+\sqrt{y^4zx}+\sqrt{z^4xy}\right)^3=xyz\left(x+y+z\right)^3\)

Dạo này bận lắm nên cũng lười luôn nên thông cảm.

15 tháng 4 2020

Bài này làm được theo 1 cách khác nhưng phải áp dụng 2 lần bđt

lần 1 dùng bđt Schur

lần 2 dùng AM-GM

NV
7 tháng 7 2021

\(\Leftrightarrow\sqrt{4x^2+4xy+8y^2}+\sqrt{4y^2+4yz+8z^2}+\sqrt{4z^2+4zx+8x^2}\ge4\left(x+y+z\right)\)

Ta có:

\(VT=\sqrt{\left(2x+y\right)^2+\left(\sqrt{7}y\right)^2}+\sqrt{\left(2y+z\right)^2+\left(\sqrt{7}z\right)^2}+\sqrt{\left(2z+x\right)^2+\left(\sqrt{7}x\right)^2}\)

\(VT\ge\sqrt{\left(2x+y+2y+z+2z+x\right)^2+\left(\sqrt{7}x+\sqrt{7}y+\sqrt{7}z\right)^2}\)

\(VT\ge\sqrt{16\left(x+y+z\right)^2}=4\left(x+y+z\right)\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)

NV
7 tháng 7 2021

BĐT Mincopxki:

\(\sqrt{x^2+a^2}+\sqrt{y^2+b^2}+\sqrt{z^2+c^2}\ge\sqrt{\left(x+y+z\right)^2+\left(a+b+c\right)^2}\)