K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

1 c nha các bạn

9 tháng 8 2018

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

21 tháng 8 2019

Trả lời

Từ giả thiết x+y+z=xyz <=> 1/xy + 1/yz + 1/zx = 1

Khi đó: x/1+x2 = \(\frac{1}{\frac{x}{\left(\frac{1}{z}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}}\)\(=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)

Tương tự cho 2 cái còn lại ta có:\(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)

\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)

Suy ra VT=\(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

ĐPCM

21 tháng 8 2019

 Ta có:\(\frac{x}{1+x^2}=\frac{xyz}{yz+x^2yz}=\frac{xyz}{yz+x\left(xyz\right)}=\frac{xyz}{yz+x\left(x+y+z\right)}=\frac{xyz}{yz+x^2+xy+xz}=\frac{xyz}{y\left(x+z\right)+x\left(x+z\right)}\)

\(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}\)

Chứng minh tương tự : \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(y+z\right)\left(y+x\right)}\)

                                        \(\frac{3z}{1+z^2}=\frac{3xyz}{\left(x+z\right)\left(x+y\right)}\)

Khi đó VT \(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}+\frac{2xyz}{\left(y+z\right)\left(y+x\right)}+\frac{3xyz}{\left(x+z\right)\left(z+y\right)}\)

\(=\frac{xyz\left[y+z+2\left(z+x\right)+3\left(x+y\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(đpcm\right)\)

( mình đang vội nên làm hơi tắt mong bạn thông cảm )

23 tháng 8 2016

câu nào cx ghi là lớp 8 nhưng thực ra lớp 9 cx k nổi vc

23 tháng 8 2016

lớp 8 đó anh Thắng ạ =.="

8 tháng 7 2016
(x+z-x)/x = (z+x-y)/y = (x+y-z)/z
8 tháng 7 2016

sao lại không thỏa mãn điều kiện hả bn??

8 tháng 4 2018

cũng bằng 3

12 tháng 3 2023

=���+�+1+�����+��+�+����2��+���+��

=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)

=�+��+1��+�+1

=1

 

 

NV
12 tháng 3 2021

\(x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\dfrac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

\(B=\dfrac{16.\left(-z\right)}{z}+\dfrac{3.\left(-x\right)}{x}-\dfrac{2019.\left(-y\right)}{y}=2019-19=2000\)

(x+y)^3 - 3xy(x+y) + z^3 - 3xyz = 0

(x+y+z) ( (x+y)^2 +z^2 -z(x+y) -3xy) =0

(x+y+z) ( x^2+ 2xy+y^2 +z^2- zx-zy-3xy)=0

(x+y+z) ( x^2+y^2+z^2 -zx-zy -xy)=0

Suy ra x+y+z =0 

x+y = -z

y+z = -x

x+z = -y

B = -16 + (-3) +2038 = 2019

7 tháng 2 2020

Ta có: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\left(x,y,z\ne0\right)\)

+) x + y + z = 0 \(\Rightarrow B=\frac{-16z}{z}+\frac{-3x}{x}-\frac{-2038y}{y}\)

\(=-16-3+2038=2019\)

+) x = y = z \(\Rightarrow B=\frac{16.2z}{z}+\frac{3.2x}{x}-\frac{2038.2y}{y}\)

\(=32+6-4076=-4038\)