K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2019

Sử dụng bất đẳng thức: 

\(x^3+y^3\ge3xy\left(x+y\right)\)

Có: \(M=2018\left(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(x+z\right)+xyz}\right)\)

\(M\le2018\left(\frac{xyz}{xy\left(x+y+z\right)}+\frac{xyz}{yz\left(x+y+z\right)}+\frac{xyz}{xz\left(x+y+z\right)}\right)\)

\(M\le2018\left(\frac{x+y+z}{x+y+z}\right)=2018\)

Vậy Max M=2018 khi x=y=z=1

5 tháng 5 2019

Sửa lại \(x^3+y^3\ge xy\left(x+y\right)\)

Xin lỗi

\(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)

\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\)\(x=-y=z=1\)

\(\Rightarrow\)\(A=x^{2018}+y^{2018}+z^{2018}=1^{2018}+\left(-1\right)^{2018}+1^{2018}=3\)

... 

13 tháng 5 2018

Bài 1:

a) xét tg ABE và tg ACF có:

AEB = AFC = 90 độ

BAE = CÀ( A chung )

=> tg ABE = tg ACF ( g.g)

=> AF/AB = AE/AC

=> AE*AC = AF*AB

17 tháng 11 2019

Ta có: x^2+2y^2+z^2-2xy-2y-4z+5=0

<=> ( x^2 - 2xy + y^2 ) + ( y^2 - 2y +1 ) + ( z^2 - 4z + 4 ) = 0

<=> ( x - y )^2 + ( y - 1 )^2 + ( z - 2 )^2 = 0

=> x - y = 0 và y - 1 = 0 và z - 2 = 0

<=> x = y = 1 và z = 4

Nên P = 1