Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)
\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)
\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)
M = x.√[(2008+y²).(2008+z²)\(2008+x²)] + y.√[(2008+x²).(2008+z²)\(2008+y²)] + z.√[(2008+y²).(2008+x²)\(2008+z²)]
ta có:
2008 + x² = xy + xz + yz + x²
2008 + x² = (x+y).(x+z)
tương tự: 2008 + y² = (x+y).(y+z) và 2008 + z² = (z+y).(x+z)
chỉ việc thay vào rùi rút gọn thui
=> M = x.√[(x+y).(y+z).(x+z).(z+y)\ (x+y).(x+z)] + y.√[(x+y).(x+z).(x+z).(z+y)\(y+x).(y+z)] + z.√[(x+y).(x+z).(y+z).(y+x)\(x+z).(z+y)]
=> M = x.|y+z| + y.|z+x| + z.|x+y|
=> M = 2.2008
Thay \(xy+yz+xz=2018\) ta được:
\(\left\{{}\begin{matrix}2018+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\\2018+y^2=y^2+xy+yz+xz=\left(y+z\right)\left(x+y\right)\\2018+z^2=z^2+xy+yz+xz=\left(x+z\right)\left(y+z\right)\end{matrix}\right.\)
Sau đó thay vào lần lượt đề bài là được
Lời giải:
Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Đặt \((\frac{1}{a}, \frac{1}{b}, \frac{1}{c})=(x,y,z)\), trong đó $a,b,c>0$ thì ta có:
\(ab+bc+ac=1\) và cần phải CMR:
\(P=\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}+\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}+\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}\)
-----------------------------------------------
Ta có:
\(\frac{\sqrt{(\frac{1}{b^2}+1)(\frac{1}{c^2}+1})-\sqrt{\frac{1}{b^2}+1}-\sqrt{\frac{1}{c^2}+1}}{\frac{1}{bc}}=\sqrt{(b^2+1)(c^2+1)}-b\sqrt{c^2+1}-c\sqrt{b^2+1}\)
\(=\sqrt{(b^2+ab+bc+ac)(c^2+ac+bc+ab)}-b\sqrt{c^2+ac+bc+ab}-c\sqrt{b^2+ab+bc+ac}\)
\(=\sqrt{(b+a)(b+c)(c+a)(c+b)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}\)
\(=(b+c)\sqrt{(a+b)(a+c)}-b\sqrt{(c+a)(c+b)}-c\sqrt{(b+a)(b+c)}(1)\)
Tương tự:
\(\frac{\sqrt{(\frac{1}{c^2}+1)(\frac{1}{a^2}+1})-\sqrt{\frac{1}{c^2}+1}-\sqrt{\frac{1}{a^2}+1}}{\frac{1}{ac}}=(a+c)\sqrt{(b+a)(b+c)}-a\sqrt{(c+a)(c+b)}-c\sqrt{(a+b)(a+c)}(2)\)
\(\frac{\sqrt{(\frac{1}{a^2}+1)(\frac{1}{b^2}+1})-\sqrt{\frac{1}{a^2}+1}-\sqrt{\frac{1}{b^2}+1}}{\frac{1}{ab}}=(a+b)\sqrt{(c+a)(c+b)}-b\sqrt{(a+b)(a+c)}-a\sqrt{(b+c)(b+a)}(3)\)
Từ \((1);(2);(3)\Rightarrow P=(b+c-c-b)\sqrt{(a+b)(a+c)}+(a+c-c-a)\sqrt{(b+a)(b+c)}+(a+b-b-a)\sqrt{(c+a)(c+b)}\)
\(=0\)
Ta có đpcm.
Ta có BĐT:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow6\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)+2016\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow7.\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le6\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+2016\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\le2016\)
Xét \(P=\frac{1}{\sqrt{3\left(2x^2+y^2\right)}}+\frac{1}{\sqrt{3\left(2y^2+z^2\right)}}+\frac{1}{\sqrt{3\left(2z^2+x^2\right)}}\)
\(P^2=\left(\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2x^2+y^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2y^2+z^2}}+\frac{1}{\sqrt{3}}.\frac{1}{\sqrt{2z^2+x^2}}\right)^2\)
Áp dụng BĐT Bunhiacopxki ta có:
\(P^2\le\left(\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2+\left(\frac{1}{\sqrt{3}}\right)^2\right)\left(\left(\frac{1}{\sqrt{2x^2+y^2}}\right)^2+\left(\frac{1}{\sqrt{2y^2+z^2}}\right)^2+\left(\frac{1}{\sqrt{2z^2+x^2}}\right)^2\right)\)
\(\Leftrightarrow P^2\le\frac{1}{2x^2+y^2}+\frac{1}{2y^2+z^2}+\frac{1}{2z^2+x^2}\)
Mặt khác ta có:
\(\frac{1}{2x^2+y^2}=\frac{1}{x^2+x^2+y^2}\le\frac{1}{9}\left(\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\frac{1}{2y^2+z^2}\le\frac{1}{9}\left(\frac{1}{y^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(\frac{1}{2z^2+x^2}\le\frac{1}{9}\left(\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{x^2}\right)\)
\(\Rightarrow P^2\le\frac{1}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\le\frac{1}{3}.2016=672\)
\(\Rightarrow P\le4\sqrt{42}\)
Dấu '=' xảy ra khi \(x=y=z=\sqrt{\frac{1}{672}}\)