Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\z\ge0\end{matrix}\right.\)
\(A=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)
\(=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}.\sqrt{z}}{\sqrt{xz}+\sqrt{xyz}.\sqrt{z}+\sqrt{xyz}}\)
\(=\dfrac{1}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}\)
\(=\dfrac{\sqrt{yz}+\sqrt{y}+1}{\sqrt{yz}+\sqrt{y}+1}=1\)
\(\Rightarrow\sqrt{A}=\sqrt{1}=1\)
\(T=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
\(\odot\) Áp dụng bất đẳng thức AM - GM ta có:
\(yz\sqrt{x-1}=yz\times\left(1\times\sqrt{x-1}\right)\le yz\times\dfrac{1+x-1}{2}=\dfrac{xyz}{2}\)
\(xz\sqrt{y-2}=\dfrac{xz}{\sqrt{2}}\times\left(\sqrt{2}\times\sqrt{y-2}\right)=\dfrac{xz}{\sqrt{2}}\times\dfrac{2+y-2}{2}=\dfrac{xyz}{2\sqrt{2}}\)
\(xy\sqrt{z-3}=\dfrac{xy}{\sqrt{3}}\times\left(\sqrt{3}\times\sqrt{z-3}\right)=\dfrac{xy}{\sqrt{3}}\times\dfrac{3+z-3}{2}=\dfrac{xyz}{2\sqrt{3}}\)
\(\odot\) Suy ra \(T\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
\(\odot\) Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\\sqrt{2}=\sqrt{y-2}\\\sqrt{3}=\sqrt{z-3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)
\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)
\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)
\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)
Dấu = xảy ra khi \(x=y=z=9\)
Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\)
CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\) ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)
\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)
Mặt khác : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)
Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)
" = " \(\Leftrightarrow x=y=z=9\)
Lâu lắm r mới quay lại web :))
Xét : \(2A=\dfrac{2\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{2\sqrt{xz}}{y+2\sqrt{xz}}+\dfrac{2\sqrt{xy}}{z+2\sqrt{xy}}\)
Áp dụng BĐT AM - GM cho các số dương , ta có :
\(\dfrac{2\sqrt{yz}}{x+2\sqrt{yz}}=\dfrac{x+2\sqrt{yz}-x}{x+2\sqrt{yz}}=1-\dfrac{x}{x+2\sqrt{yz}}\le1-\dfrac{x}{x+x+z}\left(1\right)\)
\(\dfrac{2\sqrt{xz}}{y+2\sqrt{xz}}=\dfrac{y+2\sqrt{xz}-y}{y+2\sqrt{xz}}=1-\dfrac{y}{y+2\sqrt{xz}}\le1-\dfrac{y}{x+y+z}\left(2\right)\)
\(\dfrac{2\sqrt{xy}}{z+2\sqrt{xy}}=\dfrac{z+2\sqrt{xy}-z}{z+2\sqrt{xy}}=1-\dfrac{z}{z+2\sqrt{xy}}\le1-\dfrac{z}{x+y+z}\left(3\right)\)
Cộng từng vế của \(\left(1;2;3\right)\) ta được :
\(2A\le1+1+1-\left(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}\right)=2\)
\(\Leftrightarrow A\le1\)
Dấu \("="\Leftrightarrow x=y=z\)
\(\Rightarrow A_{Max}=1\Leftrightarrow x=y=z\)
\(\dfrac{\sqrt{1+x^3+y^3}}{xy}>=\sqrt{\dfrac{3}{xy}}\)
\(\dfrac{\sqrt{1+y^3+z^3}}{yz}>=\sqrt{\dfrac{3}{yz}}\)
\(\dfrac{\sqrt{1+z^3+x^3}}{xz}>=\sqrt{\dfrac{3}{xz}}\)
=>\(VT>=\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)=3\sqrt{3}\)
Lời giải:
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)
\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)
Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)
Hoàn toàn tương tự:
\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)
Cộng theo vế các BĐT đã thu được ta có:
\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)
\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=3\)
Tham khảo tại đây:
Câu hỏi của Hồ Minh Phi - Toán lớp 9 | Học trực tuyến
Lời giải:
Để cho gọn đặt \((\sqrt{x}; \sqrt{y}; \sqrt{z})=(a,b,c)\) với \(a,b,c>0\)
Khi đó:
\(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
\(=\frac{1}{2}(\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab})\)
\(=\frac{1}{2}\left(1-\frac{a^2}{a^2+2bc}+1-\frac{b^2}{b^2+2ac}+1-\frac{c^2}{c^2+2ab}\right)\)
\(=\frac{3}{2}-\frac{1}{2}\underbrace{\left(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\right)}_{M}\)
Áp dụng BĐT Cauchy-Schwarz:
\(M\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)
\(\Rightarrow A=\frac{3}{2}-\frac{1}{2}M\leq \frac{3}{2}-\frac{1}{2}=1\)
Vậy \(A_{\max}=1\Leftrightarrow a=b=c\Leftrightarrow x=y=z\)