Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: với 0 ° < α < 90 ° thì sinx < 1, suy ra sinx – 1 < 0
Ta có: *nếu x = 45 ° thì sinx = cosx, suy ra: sinx – cosx = 0
*nếu x < 45 ° thì cosx = sin( 90 ° – x)
Vì x < 45 ° nên 90 ° – x > 45 ° , suy ra: sinx < sin( 90 ° – x)
Vậy sinx – cosx < 0
*nếu x > 45 ° thì cosx = sin( 90 ° – x)
Vì x > 45 ° nên 90 ° – x < 45 ° , suy ra: sinx > sin( 90 ° – x)
Vậy sinx – cosx > 0.
Ta có: với 0 ° < α < 90 ° thì cosx < 1, suy ra 1 – cosx > 0
Ta có: *nếu x = 45 ° thì tgx = cotgx, suy ra: tgx – cotgx = 0
*nếu x < 45 ° thì cotgx = tg( 90 ° – x)
Vì x < 45 ° nên 90 ° – x > 45 ° , suy ra: tgx < tg( 90 ° – x)
Vậy tgx – cotgx < 0
*nếu x > 45 ° thì cotgx = tg( 90 ° – x)
Vì x > 45 ° nên 90 ° – x < 45 ° , suy ra: tgx > tg( 90 ° – x)
Vậy tgx – cotgx > 0.
\(cosx=\sqrt{1-\dfrac{7}{16}}=\dfrac{3}{4}\)
\(tanx=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cotx=1:\dfrac{\sqrt{7}}{3}=\dfrac{3}{\sqrt{7}}=\dfrac{3\sqrt{7}}{7}\)
\(M=\left(\dfrac{3}{7}\sqrt{7}+\dfrac{1}{3}\sqrt{7}\right):\left(\dfrac{3}{7}\sqrt{7}-\dfrac{1}{3}\sqrt{7}\right)\)
\(=\dfrac{16}{21}:\dfrac{2}{21}=8\)
a: \(0< \sin x< 1\)
nên \(\sin x-1< 0\)
b: \(0< \cos x< 1\)
nên \(1-\cos x>0\)
a) sin = đối / huyền => sinx < 1 => sinx - 1 < 0
b) cos = kề / huyền => cosx < 1 => 1 - cosx > 0
c) sinx - cosx = sinx - sin(90-x)
Nếu x > 90-x hay x > 45 thì sinx - sin(90-x) > 0 hay sinx - cosx > 0
Nếu x < 90-x hay x < 45 thì sinx - sin(90-x) < 0 hay sinx - cosx < 0
d) Tương tự câu c)