Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi H là hình chiếu vuông góc của O lên mặt phẳng (ABC), có
Khi đó
Cậu gán giá trị OA=OB=OC=1 và tình cho dễ nhé. Đặc biệt hóa ý
Qua B kẻ đường thẳng song song OM cắt OC kéo dài tại D
\(\Rightarrow OM||\left(ABD\right)\Rightarrow d\left(OM;AB\right)=d\left(OM;\left(ABD\right)\right)=d\left(O;\left(ABD\right)\right)\)
Gọi E là trung điểm BD, từ O kẻ \(OH\perp AE\)
\(BD||OM\) và M là trung điểm BC\(\Rightarrow OM\) là đường trung bình tam giác BCD
\(\Rightarrow BD=2OM=BC\Rightarrow\Delta BCD\) vuông cân tại B
O là trung điểm CD (do OM là đường trung bình BCD), E là trung điểm BD
\(\Rightarrow OE\) là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=\dfrac{a\sqrt{2}}{2}\\OE||BC\Rightarrow OE\perp BD\end{matrix}\right.\)
\(\left\{{}\begin{matrix}OA\perp OB\\OA\perp OC\end{matrix}\right.\) \(\Rightarrow OA\perp\left(OBC\right)\Rightarrow OA\perp BD\)
\(\Rightarrow BD\perp\left(OAE\right)\Rightarrow BD\perp OH\)
\(\Rightarrow OH\perp\left(ABD\right)\Rightarrow OH=d\left(O;\left(ABD\right)\right)\)
Áp dụng hệ thức lượng trong tam giác vuông OAE:
\(OH=\dfrac{OA.OE}{AE}=\dfrac{OA.OE}{\sqrt{OA^2+OE^2}}=\dfrac{a\sqrt{3}}{3}\)