Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 12 ⋮ 3x + 1 => 3x + 1 ∊ Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12} => 3x ∊ {-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}. Vì 3x ⋮ 3 => 3x ∊ {-3;0;3} => x ∊ {-1;0;1}. Vậy x ∊ {-1;0;1}. b) 2x + 3 ⋮ 7 => 2x + 3 ∊ B(7) = {...;-21;-14;-7;0;7;14;21;...}. Vì 2x ⋮ 2 mà 3 lẻ nên khi số lẻ trừ đi 3 thì 2x mới ⋮ 2 => 2x + 3 lẻ => 2x + 3 ∊ {...;-35;-21;-7;7;21;35;...} => 2x ∊ {...;-38;-24;-10;4;18;32;...} => x ∊ {...;-19;-12;-5;2;9;16;...} => x ⋮ 7 dư 2 => x = 7k + 2. Vậy x = 7k + 2 (k ∊ Z)
\(x+7⋮x-3\\ \Rightarrow\left(x+7\right)-\left(x-3\right)⋮x-3\\ \Rightarrow10⋮x-3\\ \Rightarrow x-3\in\left\{\pm10;\pm5;\pm2;\pm1\right\}\\ \Rightarrow x\in\left\{13;-7;8;-2;5;1;4;2\right\}\)
S = (x - 1) + (x - 3) + (x - 5) +...+ (x - 99)
S = (x + x + x +...+ x) - (1 + 3 + 5 +...+ 99)
Tổng 1 Tổng 2
Số số hạng của tổng 2 cũng như tổng 1 là:
(99 - 1) : 2 + 1 = 50 (số)
Ta có:
S = 50x + (99 + 1).50 : 2
S = 50x + 100.50 : 2
S = 50x + 2500
S = 50(x + 50) chia hết cho 50
Ta có
\(\frac{n+2}{n-3}=\frac{\left(n-3\right)+5}{n-3}=1+\frac{5}{n-3}\)
Đẻ n+2 chia hết cho n-2
=>5 chia hết cho n-3 hay n-3 thuộc Ư(5)
=>n-3 thuộc(-5;-1;1;5)
n=(-2;2;4;8)
Nếu bài làm của mình đúng thì tick nha bạn cảm ơn.
Chúc bạn năm mới mạnh khoẻ,vui vẻ,may mắn,học giỏi nha.
Để S chia hết cho 12 => S chia hết cho 3 và 4 vì ( 3; 4 ) = 1
Ta có: S = 3 + 32 + 33 + ... + 310
= ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 39 + 310 )
= 3 x ( 1 + 3 ) + 33 x ( 1 + 3 ) + ... + 39 x ( 1 + 3 )
= 3 x 4 + 33 x 4 + ... + 39 x 4
= ( 3 + 33 + ... + 39 ) x 4
=> S chia hết cho 4 và chia hết cho 3 vì các số hạng đều chia hết cho 3.
=> S chia hết cho 12.
Bầi 2:
a: A=x+54
Để A chia hết cho 2 thì x chia hết cho 2
b: Để A chia hết cho 3 thì x chia hết cho 3
\(a,S=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\\ S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ S=\left(3+3^2\right)\left(1+3^2+...+3^{18}\right)=12\left(1+3^2+...+3^{18}\right)⋮12\)
\(b,S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ S=\left(3+3^2+3^3+3^4\right)+....+3^{16}\left(3+3^2+3^3+3^4\right)\\ S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ S=120\left(1+...+3^{16}\right)⋮120\)
\(a,S=3+3^2+3^3+...+3^{20}\)
Ta thấy:\(3+3^2=12⋮12\)
\(\Rightarrow S=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{18}\left(3+3^2\right)\\ \Rightarrow S=\left(3+3^2\right)\left(1+3^2+...+1^{18}\right)\\ \Rightarrow S=12.\left(1+3^2+...+3^{18}\right)⋮12\\ \left(đpcm\right)\)
\(b,Ta\) \(thấy:\)\(3+3^2+3^3+3^4=120⋮120\)
\(\Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{17}+3^{18}+3^{19}+3^{20}\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)+...+3^{16}\left(3+3^2+3^3+3^4\right)\\ \Rightarrow S=\left(3+3^2+3^3+3^4\right)\left(1+...+3^{16}\right)\\ \Rightarrow S=120\left(1+...+3^{16}\right)⋮120\\ \left(đpcm\right)\)