Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{a}{b}=\frac{c}{d}=k\left(1\right)\)
\(\Rightarrow a=bk\) và c = dk
\(\Rightarrow\)2a + 3c = 2bk - 3dk =k . (2b - 3d)
\(\Rightarrow\)\(\frac{2a+3c}{2b+3d}=k\frac{2b+3d}{2b+3d}=k\)
\(\Rightarrow\)\(\frac{2a+3c}{2b+3d}=k\left(2\right)\)
từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2a+3c}{2b+3d}dpcm\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
a) => \(\frac{2a+c}{2b+d}=\frac{2kb+kd}{2b+d}=\frac{k\left(2b+d\right)}{2b+d}=k\) (1)
\(\frac{2a-3c}{2b-3d}=\frac{2kb-3kd}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\) (2)
Từ (1) và (2) => \(\frac{2a+c}{2b+d}=\frac{2a-3c}{2b-3d}\)
b) => \(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)
đặt a/b =c/d =k
=> a=bm , c=dm
=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)
=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)
Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d
câu 2 tương tự nha
sai đề r, a/3 là s, phải a/b chứ, nếu là a/b thì lm ntnày:
Lấy a/b=c/d=k(k thuộc N*)
=>a=bk ; c=dk
Xét : + 2a-3c/2b-3d=2bk-3dk/2b-3d= k^2.(2b-3d)/2b-3d=k^2 (1)
+ 2a+3c/2b+3d=2bk+3dk/2b+3d= k^2.(2b+3d)/2b+3d=k^2 (2)
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)
Vậy 2a-3c/2b-3d=2a+3c/2b+3d
a/ do \(\frac{a}{b}\) = \(\frac{c}{d}\) = \(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)(điều phải suy ra)
bạn viết sai đề bài b nhé phân số đầu là \(\frac{2a+3c}{2b+3d}\)
b/ đặt \(\frac{a}{b}\)= \(\frac{c}{d}\) là K
a=Kb;c=Kd
ta có:\(\frac{2a+3c}{2b+3d}\)= \(\frac{2Kb+3Kd}{2b+3d}\) = \(\frac{k\left(2b+3d\right)}{2b+3d}\) = K (1)
\(\frac{2a-3c}{2b-3d}\) = \(\frac{2Kb-3Kd}{2b-3d}\) = \(\frac{k\left(2b-3d\right)}{2b-3d}\) =K (2)
từ (!) và (2) suy ra \(\frac{2a+3c}{2b+3d}\) = \(\frac{2a-3c}{2b-3d}\)