K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

DO đó: ΔAHB=ΔAHC

Suy ra: HB=HC

hay H là trung điểm của BC

b: Xét ΔMAD và ΔMBH có 

\(\widehat{MAD}=\widehat{MBH}\)

MA=MB

\(\widehat{AMD}=\widehat{BMH}\)

Do đó:ΔMAD=ΔMBH

Suy ra: AD=BH

hay BH=2,5cm

Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

hay AH=6(cm)

6 tháng 2 2022

bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với

c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có 

AN chung

\(\widehat{KAN}=\widehat{QAN}\)

Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)

Suy ra: AK=AQ(hai cạnh tương ứng) 

a) Xét ΔAHB và ΔAHC có 

AB=AC(ΔBAC cân tại A)

AH chung

BH=CH(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH\(\perp\)BC tại H

b) Xét ΔADM và ΔBHM có 

\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)

MA=MB(M là trung điểm của AB)

\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)

Do đó: ΔADM=ΔBHM(g-c-g)

Suy ra: AD=BH(hai cạnh tương ứng)

mà AD=12cm(gt)

nên BH=12cm

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AH^2=20^2-12^2=256\)

hay AH=16(cm)

26 tháng 7 2021

Thanks ạ :33

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: Xét ΔMAD và ΔMBH có

góc MAD=góc MBH

MA=MB

góc AMD=góc BMH

=>ΔMAD=ΔMBH

=>AD=BH

mà AD//BH

nên ADBH là hình bình hành

=>BD=AH

27 tháng 3 2020

Đề sai rồi cậu nhé! Δ ABC cân tại A thì AB = AC chứ!

27 tháng 3 2020

bạn ơi hình như vầy nè A B C

7 tháng 2 2020

a, vì tgABC là tg cân tại A có AH là đường cao 

=> AH là đường phân giác của gBAC

xét tgAHB và tgAHC có AB=AC

                                     gBAH=gCAH

                                    AH là cạnh chung

=> tgAHB=tgAHC (c.g.c)

b, vì tgABC là tg cân tại A có AH là đường cao

=> AH là đường trung tuyến 

=> H là trung điểm của BC

c, bn xem lại đề bài câu c giúp mk 

mk ko hiểu lắm

22 tháng 6 2020

1) d) Ta có: \(\Delta\)KHC cân tại H 

=> HK = CK 

=> AB = AC = 2Ck = 2HK 

=> AB = 2 HK 

Ta có: 

Qua H kẻ đường thẳng // với HA cắt AB tại T 

Xét \(\Delta\)KHA và \(\Delta\)ATK có: 

AK chung 

^HKA = ^TAK ( so le trong ) 

^HAK = ^TKA ( so le trong ) 

=> \(\Delta\)KHA = \(\Delta\)ATK 

=> AT = HK và KT = HA 

=> AB = 2HK = 2AT

Khi đó: AH + BK = KT + BK > BT = AB + AT 

=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB 

Vậy 2 ( AH + BK) > 3AB

23 tháng 6 2020

2)  M I D E A P Q B C H

a)

  • Xét \(\Delta\)ADC và \(\Delta\)ABE có: 

AD = AB ( \(\Delta\)ADB cân tại A ) 

AC = AE ( \(\Delta\)ACE cân tại E) 

^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC  ; ^BAE = ^BAC + ^CAE = ^BAC + 90o ) 

=> \(\Delta\)ADC = \(\Delta\)ABE (1)

=> CD = EB 

  •  Gọi P; Q lần lượt là giao điểm của DC và BA và BE

(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)

Xét \(\Delta\)APD và \(\Delta\)PQB 

có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB  = 180 độ ( tổng 3 góc  trong 1 tam giác ) 

mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh) 

=> ^PQB = ^PAD = ^BAD = 90 độ  ( \(\Delta\)ABD vuông ) 

=> DC vuông BE 

b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE 

Gọi giao điểm của DE và MA là I

Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA  (3) 

=> DM = AE = AC 

Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ 

mà ^DAE + ^BAC = 180 độ 

=> ^MDA = ^BAC 

Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM 

=> \(\Delta\)ABC = \(\Delta\)DAM 

=> ^DAM = ^ABC 

=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ 

=> M; I; A; H thẳng hàng 

=> AH cắt DE tại I 

(3) => ID = IE => I là trung điểm của DE 

Do vậy AH đi qua trung điểm của DE