Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ADC và tam giác AEB có:
AD = AB(giả thiết)
\(\widehat{DAC}=\widehat{BAE}\)(\(=60^0+\widehat{BAC}\))
AC = AE( giả thiết)
\(\Rightarrow\)tam giác ADC = tam giác ABE (c-g-c)
\(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 góc tương ứng)
Xét tam giác ADI và tam giác BIM có:
\(\widehat{ADI}+\widehat{AIM}+\widehat{DAI}=\widehat{IBM}+\widehat{BIM}+\widehat{IMB}=180^0\)(theo định lí tổng 3 góc của tam giác)
Mà \(\widehat{ADI}=\widehat{IBM}\)(chứng minh trên)
\(\widehat{AID}=\widehat{BIM}\)(2 góc đối đỉnh)
\(\Rightarrow\widehat{DAI}=\widehat{IMB}\)
Mà \(\widehat{DAI}=60^0\)
\(\Rightarrow\widehat{IMB}=60^0\)
Ta có: \(\widehat{IMB}+\widehat{BMC}=180^0\)(2 góc kề bù)
\(\Rightarrow60^0+\widehat{BMC}=180^0\)
\(\Rightarrow\widehat{BMC}=180^0-60^0=120^0\)
Vậy \(\widehat{BMC}=120^0\)(ĐPCM)
ta có DAC=60+BAC b, BMC=MCE+MEC
BAE=60+BAC MCE+MEC=ACE+MCA+MEC=BMC
=>DAC=BAC MÀ ACE=AEB
SAU ĐÓ XÉT TAM GIÁC => BMC = ACE+AEB+MEC=60+60=120
toán lớp 7 hả năm sau anh /chị nhóe