Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ADEF có : góc A = 90 độ ( tam giác ABC vuông tại A)
góc EFA = 90 độ ( EF vuông góc với AB tại F)
góc EDA = 90 ( ED vuông góc với AC tại D)
suy ra : ADEF là hcn
b) Xét tam giác ABC có : BE = EC ( E là trung điểm của BC )
ED song song với AB ( EFAD là hcn )
suy ra : AD = DC
Xét tứ giác AECK có : ED = DK ( E đối xứng với K qua D )
AD = DC (cmt)
suy ra : tứ giác AECK là hình bình hành
mà ED vuông góc với AC
suy ra : hbh AECK là hình thoi
a: Xét tứ giác ADEF ccó
gócc ADE=góc AFE=góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác AECK có
Dlà trung điểm chung của AC và EK
EA=EC
Do đó: AECK là hình thoi
c: ΔEMA vuông tại M
mà MO là trung tuyến
nên MO=EA/2=DF/2
Xét ΔMDF có
MO là trung tuyến
MO=DF/2
Do đó: ΔMDF vuông tại M
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a: Xét tứ giác AEIF có
\(\widehat{AEI}=\widehat{AFI}=\widehat{FAE}=90^0\)
Do đó: AEIF là hình chữ nhật
Xl bạn trình độ mik chỉ làm đc vậy thôi nha!
Chứng minh
a, Xét tứ giác ANEF có:
Góc NAF= 900 ( vì ΔABC vuông tại A)
Góc ANF= 900 (vì EN⊥ AC)
Góc AFE= 900 ( vì EF ⊥ AB)
⇒ Tứ giác ANEF là hình chữ nhật( đpcm)
b)Xét tam giác BAC vuông tại A có:
AE là đường trung tuyến(BE=EC)
\(\Rightarrow\)AE=BE=EC
Xét t/g AEBD có:
BF=FA(EF vuông góc BA)
DF=FE(D đx với E qua F)
\(\Rightarrow\)T/g AEBD là hbh
Mà AE=BE(cmt)
\(\Rightarrow\)T/g AEBD là hthoi