Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 \(\Delta MNQ\)và \(\Delta PKQ\) có:
\(\hept{\begin{cases}KQ=QN\left(gt\right)\\PQ=QM\left(gt\right)\\\widehat{KQP}=\widehat{NQM\left(đ^2\right)}\end{cases}}\)
\(\Rightarrow\Delta MNQ=\Delta PKQ\left(c.g.c\right)\left(ĐPCM\right)\)
b) theo a, ta có : \(\Delta MNQ=\Delta PKQ\)
\(\Rightarrow\widehat{QPK}=\widehat{QMN}\)( 2 góc tương ứng )
Mà 2 góc này nằm ở vị trí so le trong của MN và PK :
\(\Rightarrow MN//PK\left(DHNB\right)\left(ĐPCM\right)\)
a: Xét ΔPAN có
PM vừa là đường cao, vừa là trung tuyến
=>ΔPAN cân tại P
b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)
Xét ΔPAN có
NB,PM là trung tuyến
NB cắt PM tại G
=>G là trọng tâm
GP=2/3*3=2cm
c: CI là trung trực của MP
=>I là trung điểm của MP và CI vuông góc MP tại I
Xét ΔMPN có
I là trung điểm của PM
IC//MN
=>C là trung điểm của PN
=>PM,NB,AC đồng quy
a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
b) Ta có \(\Delta ABM\)= \(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)
=> AB // CD (đpcm)
xét 2 tam giác FEM và PEN
FE=PE (gt)
ME=EN (gt)
góc NEP=FEM (đđ)
=> tam giác FEM=PEN (c-g-c)
=>NP=MF(1)
=> góc NPE=EFM (2 góc t.ư)
mà góc này ở vị trí so le trong của NP và MF
=>NP//MF(2)
tương tự ta có tam giác NPD=KMD (c-g-c)
=> NP=MK(3)
=>góc PND=DKM mà 2 góc ở vị trí so le trong của NP và MK
=>NP//MK(4)
từ (1),(3)=> FM=MK(5)
từ (2),(4)=> F,M,K thẳng hàng(6)
từ (5),(6)=> M là trung điểm của FK
a )
Xét tam giác ABM và tam giác ACM có:
BM = MC ( vì M là trung điểm của BC )
AM là cạnh chung
AB = AC ( gt )
=> tam giác ABM = tam giác ACM ( c.c.c )
b) Xét tam giác AEH và tam giác CEM có:
EH = EM (gt)
góc AEM = góc MEC (2 góc đối đỉnh )
AE = EC ( vì E là trung điểm của AC )
=> tam giác AEK = tam giác CEM (c.g.c)
c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu
Cho tam giác ABC vuông tại A.Gọi M là trung điểm của AC.Trên tia đối của tia MB lấy điêmr D sao cho MD=MB
a/ Chứng minh tam giác AMD bằng tam giác CMB
b/Chứng minh AD=BC và AD//BC
c/Chứng minh AC vuông góc với CD
d/Đường thẳng đi qua B song song với AC cắt CD tại N . Chứng minh tam giác ABM bằng tam giác CNM
CẢ NHÀ GIÚP EM VỚI, MAI EM NỘP RỒI Ạ
a: Xét ΔAMB và ΔKMC có
MA=MK
\(\widehat{AMB}=\widehat{KMC}\)
MB=MC
Do đó: ΔAMB=ΔKMC
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó: BECF là hình bình hành
Suy ra: BC và EF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của FE
hay F,M,E thẳng hàng