K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

a) Xét 2 \(\Delta MNQ\)và \(\Delta PKQ\) có:

\(\hept{\begin{cases}KQ=QN\left(gt\right)\\PQ=QM\left(gt\right)\\\widehat{KQP}=\widehat{NQM\left(đ^2\right)}\end{cases}}\)

\(\Rightarrow\Delta MNQ=\Delta PKQ\left(c.g.c\right)\left(ĐPCM\right)\)

b) theo a, ta có : \(\Delta MNQ=\Delta PKQ\)

\(\Rightarrow\widehat{QPK}=\widehat{QMN}\)( 2 góc tương ứng )

Mà 2 góc này nằm ở vị trí so le trong của MN và PK :

\(\Rightarrow MN//PK\left(DHNB\right)\left(ĐPCM\right)\)

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0

a: Xét ΔPAN có

PM vừa là đường cao, vừa là trung tuyến

=>ΔPAN cân tại P

b: \(PM=\sqrt{5^2-4^2}=3\left(cm\right)\)

Xét ΔPAN có 

NB,PM là trung tuyến

NB cắt PM tại G

=>G là trọng tâm

GP=2/3*3=2cm

c: CI là trung trực của MP

=>I là trung điểm của MP và CI vuông góc MP tại I

Xét ΔMPN có

I là trung điểm của PM

IC//MN

=>C là trung điểm của PN

=>PM,NB,AC đồng quy

16 tháng 12 2017

a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

b) Ta có  \(\Delta ABM\)\(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)

=> AB // CD (đpcm)

28 tháng 11 2021
S/fffffffffdsbdhdjndbdbdbfbfbdbbdbdbfndndndbfnfnfnfnfnfn

xét 2 tam giác FEM và PEN

FE=PE (gt)

ME=EN (gt)

góc NEP=FEM (đđ)

=> tam giác FEM=PEN (c-g-c)

=>NP=MF(1)

=> góc NPE=EFM (2 góc t.ư)

mà  góc này ở vị trí so le trong của NP và MF

=>NP//MF(2)

tương tự ta có tam giác NPD=KMD (c-g-c)

=> NP=MK(3)

=>góc PND=DKM mà 2 góc ở vị trí so le trong của NP và MK

=>NP//MK(4)

từ (1),(3)=> FM=MK(5)

từ (2),(4)=> F,M,K thẳng hàng(6)

từ  (5),(6)=> M là trung điểm của FK

18 tháng 12 2015

a )

Xét tam giác ABM và tam giác ACM có:

BM = MC ( vì M là trung điểm của BC )

AM là cạnh chung

AB = AC ( gt )

=> tam giác ABM = tam giác ACM ( c.c.c )

b) Xét tam giác AEH và tam giác CEM có:

EH = EM (gt)

góc AEM = góc MEC (2 góc đối đỉnh )

AE = EC ( vì E là trung điểm của AC ) 

=> tam giác AEK = tam giác CEM (c.g.c)

c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu

16 tháng 12 2017

Cho tam giác ABC vuông tại A.Gọi M là trung điểm của AC.Trên tia đối của tia MB lấy điêmr D sao cho MD=MB

a/ Chứng minh tam giác AMD bằng tam giác CMB

b/Chứng minh  AD=BC và AD//BC

c/Chứng minh AC vuông góc với CD

d/Đường thẳng đi qua B song song với AC cắt CD tại N . Chứng minh tam giác ABM bằng tam giác CNM

   CẢ NHÀ GIÚP EM VỚI, MAI EM NỘP RỒI Ạ

a: Xét ΔAMB và ΔKMC có 

MA=MK

\(\widehat{AMB}=\widehat{KMC}\)

MB=MC

Do đó: ΔAMB=ΔKMC

b: Xét tứ giác BECF có 

BE//CF

BE=CF

Do đó: BECF là hình bình hành

Suy ra: BC và EF cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của FE

hay F,M,E thẳng hàng