K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2020

A P B C N Q M

+) AP // BC => S ( BCP ) = S ( BAC ) = S (1)

+) AP //BC => Theo talet: \(\frac{PN}{NM}=\frac{AN}{NC}=\frac{1}{2}\)( vì AC = 3AN ) 

Theo menelaus xét trong tam giác PMC

\(\frac{CQ}{PQ}.\frac{NP}{NM}.\frac{BM}{BC}=1\)=> \(\frac{CQ}{PQ}.\frac{1}{2}.\frac{1}{3}=1\)=> CQ = 6PQ => CP = 7 QP 

=> \(\frac{S\left(QPB\right)}{S\left(CPB\right)}=\frac{QP}{CP}=\frac{1}{7}\)

=> S ( QPB ) = S/7

25 tháng 3 2020

A B C M I D N Q

Có AB//PM => \(\frac{PI}{IB}=\frac{IN}{IA}\left(1\right)\)

Có AD//BC \(\Rightarrow\frac{DI}{IB}=\frac{IA}{IC}\left(2\right)\)

Từ (1)(2) => \(\frac{IN}{IA}=\frac{IA}{IC}\Rightarrow IA^2=IN\cdot IC\)

Xét \(\Delta PMC\) cắt tuyến BQ. Áp dụng Menelaus

\(\Rightarrow\frac{PQ}{QC}\cdot\frac{CB}{BM}\cdot\frac{MN}{NP}=1\)

\(\Leftrightarrow\frac{PQ}{QC}\cdot\frac{3}{1}\cdot\frac{2}{1}=1\Rightarrow\frac{PQ}{QC}=\frac{1}{6}\Rightarrow\frac{PQ}{PC}=\frac{1}{7}\)

Có \(S_{ABC}=S_{PBC}\Rightarrow S_{PBQ}=\frac{1}{7}S=\frac{S}{7}\)

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

21 tháng 8 2017

15 tháng 5 2016

a, xét tam giác ABC và tam giác DAB có:

góc BAC = góc ADB=90 độ

góc ABC = góc BAD( so le trong của Ax//BC)

do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)

b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

theo cm câu a : tam giác ABC đồng dạng với tam giác DAB

=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)

\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)

\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)

c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)

 

17 tháng 5 2016

sao admin ko duyệt ạ

 

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0