K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

Hình bạn tự vẽ nha : 

a) Xét tam giác AEB và tam giác AFC có :

A là góc chung

E = F = 90° ( gt )

=> tam giác AEB đồng dạng với tam giác AFC ( g - g )

 

 

7 tháng 5 2021

=> AE/AF = AB/AC

=> AE.AC=AF.AB

b) xét tam giác AEF và tam giác ABC có : A chung

AE/AF=AB/AC (cmt)

=> tam giác AEF đồng dạng với tam giác ABC

=> góc AEF = ABC

26 tháng 3 2016

1.c/m tam giac ABE đồng dạng với tam giác ACF

xét 2 tam giác ABE va tam giác ACF có

goc AEB=goc AFC

góc A chung

suy ra tam giác ABE đồng dạng với tam giác ACF(g,g)

2.c/m HE.HB=HC.HF

xét 2 tam giác EHC và FHB có

goc HEC=goc HFB

góc EHC=góc FHB(đ đ)

suy ra 2 tam giác EHC đồng dạng với tam giác FHB

nên ta có EH/FH=HC/HB=EC/FB 

mà EH/FH=HC/HB suy ra EH.HB=HC.HF(ĐPCM)

cho lời nhân xét nhé

26 tháng 3 2016

1. c/m tam giác ACF đồng dạng tam giác ABE

xét tam giác ACF và tam giác ABE

có góc AEB=góc AFC

góc A chung

suy ra tam giác ACF đồng dạng với tam giác ABE(g.g)

2. c/m HE.HB=HC.HF

Xét 2 tam giác HEC và tam giác HFB

Có góc HEC= góc HFB

góc EHC=góc FHB(đ.đ)

suy ra tam giác HEC đồng dạng với tam giác HFB

Nên ta có HE/HF=HC/HB=EC/FB

Suy ra HE.HB=HF.HC(đpcm)

cho mk lời nhận xét nhé

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao

13 tháng 5 2021

mình chỉ làm đựt câu a thui sorry nhabucminh

a/

xét tam giác HBF và tam giác HCE có :

góc BFH= góc CEH=90 độ (gt)

góc FHB= góc EHC (đối)

=>tam giác HBF đồng dạng với tam giác HCE(g.g)

 

 

 
20 tháng 1 2020

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABD\)\(ACE\) có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{A}\) chung

=> \(\Delta ABD\sim ACE\left(g-g\right).\)

Chúc bạn học tốt!

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc EAB chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF;AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng vói ΔABC

=>\(\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ABC}=4\cdot S_{AEF}\)

a: Xét ΔACF vuông tại F và ΔABE vuông tại E có 

\(\widehat{CAF}\) chung

Do đó: ΔACF\(\sim\)ΔABE

Suy ra: AC/AB=AF/AE

hay \(AC\cdot AE=AB\cdot AF\)

b Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

Do đó:ΔAEF\(\sim\)ΔABC