Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔDEF vuông tại D có
\(DE=DF\cdot\cos60^0\)
\(=15\cdot\dfrac{1}{2}=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDFE vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow DF^2=15^2-7.5^2=\dfrac{675}{4}\)
hay \(DF=\dfrac{15\sqrt{3}}{2}\left(cm\right)\)
DE=cos E .EF
DE=0,5.15
DE=7,5cm
DF=sinE.EF
DF=\(\dfrac{\sqrt{3}}{2}.15=\dfrac{15\sqrt{3}}{2}\)
Ta có: \(\cos60^o=\dfrac{DE}{E\text{F}}=\dfrac{\text{1}}{2}\Rightarrow DE=\dfrac{E\text{F}}{2}=\dfrac{\text{1}5}{2}=7,5cm\)
Áp dụng định lí Py-ta-go vào ΔDEF vuông tại D
⇒ EF2=DE2+DF2 ⇒ DF2=EF2-DE2=152-7,52=168,75
⇒ \(DF=\dfrac{15\sqrt{3}}{2}\) cm
bạn tự vẽ hình giúp mik nha
vẽ đường cao EH (H\(\in\)DF)
ta có: \(\widehat{F}\)=180\(^o\)-\(\widehat{E}\)-\(\widehat{F}\)=180-70-60=50
EH=EF.sinF=30.sin50=22,98
sinD=\(\dfrac{EH}{ED}\)\(\Rightarrow\)ED=\(\dfrac{EH}{sinD}\)=\(\dfrac{22,98}{sin60}\)=26,54
DH=\(\sqrt{DE^2-EH^2}\)(pytago)=\(\sqrt{26,54^2-22,98^2}\)=13,28
HF=\(\sqrt{EF^2-EH^2}\)(pytago)=\(\sqrt{30^2-22,98^2}\)=19,29
mà:DF=DH+HF=13,28+19,29=32,57
chu vi \(_{\Delta DEF}\)=DE+EF+DF=26,54+30+32,57=89,11
\(S_{\Delta DEF}\)=\(\dfrac{EH.DF}{2}\)=\(\dfrac{22,98.32,57}{2}\)=374,2293