Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.
Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)
Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)
Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)
Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'
=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp
Áp dụng phương tích đường tròn có: FK.FC=FD.FL' (1)
Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF
=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g) => FA2 = FK.FC (2)
Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)
=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2
Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp
Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L
Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2
Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).
Gọi O là tâm ngoại tiếp của \(\Delta\)ABC. Khi đó PK đi qua (O), thật vậy:
Gọi DP,EP,FP cắt đường tròn (K) lần thứ hai lần lượt tại M,N,Q.
Theo hệ thức lượng đường tròn: PA.PD = PB.PE = PC.PF => Tứ giác BCFE nội tiếp
Nên ta có: ^MNQ = ^MNE + ^ENQ = ^MDE + ^EFQ = ^ABP + ^CBP = ^ ABC.
Hoàn toàn tương tự: ^MQN = ^ACB. Từ đó suy ra \(\Delta\)ABC ~ \(\Delta\)MNQ (g.g)
Hai tam giác này có tâm ngoại tiếp tương ứng là O,K nên \(\Delta\)AOC ~ \(\Delta\)MKQ (g.g)
=> \(\frac{OC}{KQ}=\frac{AC}{MQ}\). Bên cạnh đó ^DMQ = ^DFQ = ^CAP nên AC // MQ.
Theo hệ quả ĐL Thales có: \(\frac{AC}{MQ}=\frac{PC}{PQ}\). Từ đây \(\frac{OC}{KQ}=\frac{PC}{PQ}\) (1)
Ta lại có ^OCP = ^ACP - ^OCA = ^MQP - ^KQM = ^KQP (2)
Từ (1) và (2) suy ra \(\Delta\)COP ~ \(\Delta\)QKP (c.g.c) => ^CPO = ^QPK
Mà ba điểm C,P,Q thẳng hàng nên ba điểm O,P,K cũng thẳng hàng. Do vậy PK đi qua O cố định (đpcm).
a) (Ta sẽ dùng phương pháp chồng hình, còn gọi là chứng minh bằng trùng hình.)
Vẽ tia \(AD'\) thỏa mãn \(\widehat{BAD'}=\widehat{MAC}\) và \(D'\) nằm trên \(\left(O\right)\).
Khi đó, \(\widehat{D'BC}=\widehat{D'AC}=\widehat{BAM}\) và ta suy ra \(D'B\) tiếp xúc với đường tròn ngoại tiếp \(ABM\).
Tương tự, \(D'C\) tiếp xúc với đường tròn ngoại tiếp \(ACM\) và ta suy ra \(D=D'\).
Vậy \(ABDC\) nội tiếp.
b) Hiển nhiên do \(\widehat{BAD}=\widehat{KAC}\).
c) (Vẫn chồng hình) Gọi \(E'\) đối xứng với \(K\) qua \(M\) suy ra \(E'BKC\) là hình bình hành.
Từ đó có \(E'B=KC=DB\) hay tam giác \(E'BD\) cân tại \(B\).
Mặt khác CM được \(BC\) là phân giác \(\widehat{E'BD}\) nên ta được \(E'\) đối xứng với \(D\) qua \(BC\).
Vậy \(E=E'\) hay \(A,E,M\) thẳng hàng.
-----
(P/S: Nếu để ý sẽ thấy tia \(AD'\) và \(AM\) thỏa tc góc ở trên sẽ đối xứng nhau qua đường phân giác \(\widehat{BAC}\). Vì thế tia \(AD'\) gọi là đường "đối trung" của tam giác \(ABC\) (ĐỐI XỨNG của TRUNG TUYẾN qua phân giác). Đường này mà cho lớp 9 toán thường thì hơi khó đó.)
Do ABKC là tứ giác nội tiếp nên \(\widehat{BAK}=\widehat{BCK}\) (Hai góc nội tiếp cùng chắn cung BK)
Do ICEK là tứ giác nội tiếp nên \(\widehat{ICK}=\widehat{IEK}\) (Hai góc nội tiếp cùng chắn cung IK)
\(\Rightarrow\widehat{DAK}=\widehat{DEK}\)
Vậy DAEK là tứ giác nội tiếp hay đường tròn ngoại tiếp tam giác ADE đi qua K.