K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

Gọi AO = x ; AB =c ; AC =b ; BC =a

=> BC =2x =a => AH = x -7

Áp dung HTL AH.BC =AB.AC => b.c =2x( x -7)

Mặt khác a+b+c =72 => b+c =72 -a =>( b+c)2 =(72-a)2 => b2 +c2 +2bc =(72-a)2  với b2 +c2 = a2 

=> (2x)2 +2.2x(x-7) = (72-2x)2 =>4x2 +4x2 -28x = 722 - 4.72x +4x2

=> 4x2 +260x - 722 =0 => x2 + 65x - 1296 =0

=> x = 16 (TM)

=>BC =2x =32

AH =x -7 =16 -7 =9

S = AH.BC =32.9/2 =16.9 =144

23 tháng 5 2021

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)

10 tháng 11 2021

Giải nhanh giúp mình với

10 tháng 11 2021

Vì AM là trung tuyến ứng với cạnh huyền BC nên \(AM=\dfrac{1}{2}BC=7,5\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=12\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=7,2\left(cm\right)\\BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\end{matrix}\right.\)

Áp dụng PTG: \(HM=\sqrt{AM^2-AH^2}=2,1\left(cm\right)\)

Vậy \(S_{AHM}=\dfrac{1}{2}HM\cdot AH=\dfrac{1}{2}\cdot2,1\cdot7,2=7,56\left(cm^2\right)\)