K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2015

Xét tam giác AMC và tam giác DMB có: 

 AM =MD (gt )

 BM =MC (gt )

 goc MAC=goc MDB(so le trong)

=>Tam giac AMC=tam giac DMB(c.g.c)

 Vì góc MAD và góc MDB là hai góc so le trong tạo bởi đường thẳng AD cắt AC và BD 

=>AC //BD 

 

a: Xét ΔAMC và ΔDMB có 

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó:ΔAMC=ΔDMB

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AC//BD

c: Xét tứ giác AFBD có 

E là trung điểm của AB

E là trung điểm của DF

Do đó: AFBD là hình bình hành

Suy ra: BD//AF và BD=AF

mà BD//AC

và AF,AC có điểm chung là A

nên F,A,C thẳng hàng

mà AF=AC(=BD)

nên A là trung điểm của FC

7 tháng 12 2021

Help mk nha. Mk đang cần để nộp bài 15 phút ^^

 

Xét ΔABC có 

D là trung điểm của AB

E là trung điểm của AC

Do đó: DE là đường trung bình của ΔABC

Suy ra: DE//BC

26 tháng 12 2021

\(\left\{{}\begin{matrix}BM=MC\\MD=MA\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABM}=\widehat{MCD}\)

Mà 2 góc này ở vị trí so le trong nên AB//CD