Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔCDM có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔABM=ΔCDM
b: Ta có: ΔABM=ΔCDM
nên \(\widehat{ABM}=\widehat{CDM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét tứ giác AGCK có
M là trung điểm của đường chéo AC
M là trung điểm của đường chéo GK
Do đó: AGCK là hình bình hành
Suy ra: AG//CK
Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của BC
Xét ΔBAC có
AH là đường trung tuyến ứng với cạnh BC
BM là đường trung tuyến ứng với cạnh AC
AH cắt BM tại G
Do đó: G là trọng tâm của ΔABC
Suy ra: \(BG=\dfrac{2}{3}BM\)
\(\Leftrightarrow GM=MK=\dfrac{1}{3}BM\)
\(\Leftrightarrow GM+MK=GK=\dfrac{2}{3}BM\)
\(\Leftrightarrow BG=GK\)
hay G là trung điểm của BK
a/
MA=MC (gt); MB=MQ (gt) => ABCQ là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)
=> AQ=BC (cạnh đối hbh) (1)
\(\widehat{ABC}=\widehat{AQC}\) (góc đối hbh) (2)
Ta có BL=BC (cạnh hình vuông) (3)
Ta có
\(\widehat{DBL}+\widehat{ABC}=360^o-\widehat{ABD}-\widehat{LBC}=360^o-90^o-90^o=180^o\left(4\right)\)
\(\widehat{BAQ}+\widehat{AQC}=180^o\) (5)
Xét \(\Delta BDL\) và \(\Delta ABQ\) có
BD=AB (cạnh hình vuông)
Từ (1) và (3) => BL=AQ
Từ (2) (4) (5) => \(\widehat{DBL}=\widehat{BAQ}\)
\(\Rightarrow\Delta BDL=\Delta ABQ\) (c.g.c) => DL=BQ
Câu b xem lại đề bài
b: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
=>ΔAMB=ΔCMD
c: G là trọng tâm
=>BG=2/3BM=2/3*1/2*BD=1/3*BD