K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔCDM có 

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: Ta có: ΔABM=ΔCDM

nên \(\widehat{ABM}=\widehat{CDM}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Xét tứ giác AGCK có

M là trung điểm của đường chéo AC

M là trung điểm của đường chéo GK

Do đó: AGCK là hình bình hành

Suy ra: AG//CK

Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh đáy BC

nên H là trung điểm của BC

Xét ΔBAC có 

AH là đường trung tuyến ứng với cạnh BC

BM là đường trung tuyến ứng với cạnh AC

AH cắt BM tại G

Do đó: G là trọng tâm của ΔABC

Suy ra: \(BG=\dfrac{2}{3}BM\)

\(\Leftrightarrow GM=MK=\dfrac{1}{3}BM\)

\(\Leftrightarrow GM+MK=GK=\dfrac{2}{3}BM\)

\(\Leftrightarrow BG=GK\)

hay G là trung điểm của BK

22 tháng 6 2023

a/ 

MA=MC (gt); MB=MQ (gt) => ABCQ là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

=> AQ=BC (cạnh đối hbh) (1)

\(\widehat{ABC}=\widehat{AQC}\) (góc đối hbh) (2)

Ta có BL=BC (cạnh hình vuông) (3)

Ta có

\(\widehat{DBL}+\widehat{ABC}=360^o-\widehat{ABD}-\widehat{LBC}=360^o-90^o-90^o=180^o\left(4\right)\)

\(\widehat{BAQ}+\widehat{AQC}=180^o\) (5)

Xét \(\Delta BDL\) và \(\Delta ABQ\) có

BD=AB (cạnh hình vuông)

Từ (1) và (3) => BL=AQ

Từ (2) (4) (5) => \(\widehat{DBL}=\widehat{BAQ}\)

\(\Rightarrow\Delta BDL=\Delta ABQ\) (c.g.c) => DL=BQ

Câu b xem lại đề bài