K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>EF=AH

b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>FE=AH

b: EM+FN=HB/2+HC/2=BC/2=10/2=5cm

c: góc NFE=góc NFH+góc EFH

=góc NHF+góc EAH

=góc HBA+góc HAB=90 độ

=>NF vuông góc với FE(1)

góc MEF=góc MEH+góc FEH=góc MHE+góc FAH

=góc HAC+góc HCA=90 độ

=>ME vuông góc với FE(2)

Từ (1), (2) suy ra NF//ME

18 tháng 1 2023

Giúp mình kẻ hình bài đấy đc ko ạ chiều mình nộp rồi🥺

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=6\left(cm^2\right)\)

=>HA*BC=12

=>HA=2,4cm

b: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

c: góc IEF=góc IEH+góc FEH

=góc IHE+góc FAH

=góc HAC+góc HCA=90 độ

=>IE vuông góc EF(1)

góc KFE=góc KFH+góc EFH

=góc KHF+góc BAH

=góc BAH+góc HBA=90 độ

=>KF vuông góc với FE(2)

Từ (1), (2) suy ra KIEF là hình thang vuông

10 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔABC có AH là đường cao ứng với cạnh BC nên 

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay \(AH=\dfrac{48}{10}=4.8cm\)

Vậy: AH=4,8cm

b) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)

mà AH=4,8cm(cmt)

nên EF=4,8cm

Vậy: EF=4,8cm