Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Xét \(\Delta AKB\) và \(\Delta AKC\) có :
AK : cạn chung
AB = AC ( gt)
BK = KC ( K là trung điểm của BC )
\(\Rightarrow\Delta AKB=\Delta AKC\left(c.g.c\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) ( kề bù )
\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AK\perp BC\)
b ) Vì :
\(\hept{\begin{cases}EC\perp BC\left(gt\right)\\AK\perp BC\left(cmt\right)\end{cases}}\)
\(\Rightarrow EC//AK\) ( tuef vuông góc đến song song )
d ) Vì \(EC\perp BC\left(gt\right)\)
\(\Rightarrow\widehat{BCE}=90^o\)
Vậy \(\widehat{BCE}=90^o\)
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
Suy ra: AM=EF
b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
=>AH=4,8cm
c: Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
Do đó: F là trung điểm của AC
Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến
nên HF=AC/2=AF
mà AF=ME
nên HF=ME
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: FE là đường trung bình
=>FE//BC
Xét tứ giác EHMF có
MH//FE
Do đó: EHMF là hình thang
mà EM=HF
nên EHMF là hình thang cân
a: BD/AD=BC/AC=5/4
b: Xét ΔHBA và ΔABC có
góc BHA=góc BAC
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: Xét ΔDAC và ΔDKB có
góc DAC=góc DKB
góc ADC=góc KDB
=>ΔDAC đồng dạng với ΔDKB
=>DA/DK=DC/DB
=>DA*DB=DK*DC
a. Xét tam giác HAC và tam giác ABC, có:
\(\widehat{C}\) : chung
\(\widehat{AHC}=\widehat{BAC}=90^o\)
Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )
b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)
Áp dụng định lý pytago tam giác ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
c. Tam giác AHB có phân giác AD:
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2)
(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)
tên các điểm bn tự đặt nha
a) ta có CK // HB ( do cùng vuông góc với AC)
CH// BK (do cùng vuông góc với AB)
tứ giác BKCH có CK // HB ,CH// BK => BKCH là hbh
b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)
A+K = 90
K= 30
c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK
d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM
tam giác AKH có AH//OM, KM=MH =>AO=OK (1)
từ O kẻ OS sao cho SA=SB
tam giác AKB có SA=SB, AO=OK => OS//BK
lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC
=> OA=OB=OC(2)
từ 1 và 2 => OA=OB=OC=OK