Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
b: BC=10cm
AH=4,8cm
BH=3,6cm
a)
Xét \(\Delta ABC\) và \(\Delta HBA\)có:
\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)
\(\widehat{ABC}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)
b)
\(\Delta ABC\)vuông tại A
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)
c) Ta có
\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)
Xét \(\Delta ABC\)và \(\Delta DEC\)có
\(\widehat{BAC}=\widehat{CDE}=90^o\)
\(\widehat{ACB}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)
\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)
d)
\(\Delta AHB\)vuông tại H
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có; \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)
Ta lại có:
\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)
\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)
Ta lại có:
\(AE=AC-EC=4-1=3\left(cm\right)\)
mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A
Vậy \(\Delta ABE\)cân tại A
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{BA}{BC}=\dfrac{HB}{AB}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{HB}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}HB=\dfrac{9}{5}=1.8\left(cm\right)\\AH=\dfrac{12}{5}=2.4\left(cm\right)\end{matrix}\right.\)
Vậy: BC=5cm; AH=2,4cm; HB=1,8cm
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BH=6^2/10=3,6cm
a.Xét tam giác HBA và tam giác ABC, có:
^AHB = ^CAB = 90 độ
^B: chung
Vậy tam giác HBA đồng dạng tam giác ABC ( g.g )
b.
Áp dụng định lý pitago, ta có:
\(BC=\sqrt{8^2+10^2}=2\sqrt{41}cm\)
Ta có: tam giác HBA đồng dạng tam giác ABC
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
\(\Leftrightarrow\dfrac{AH}{10}=\dfrac{8}{2\sqrt{41}}\)
\(\Leftrightarrow AH=\dfrac{8.10}{2\sqrt{41}}=\dfrac{40\sqrt{41}}{41}cm\)
Ta có: tam giác HBA đồng dạng tam giác ABC
\(\Rightarrow\dfrac{HB}{AB}=\dfrac{AB}{BC}\)
\(\Leftrightarrow AB^2=HB.BC\)
\(\Leftrightarrow8^2=2\sqrt{41}HB\)
\(\Leftrightarrow HB=\dfrac{32\sqrt{41}}{41}cm\)
a. Có: tam giác ABC vuông tại A (gt)
=> góc BAC = 90o
Có: AH là đường cao của tam giác ABC (gt)
=> góc AHB = góc AHC = 90o
Xet tam giác HBA và tam giác ABC, có:
góc AHB = góc BAC (=90o)
góc B chung
=> tam giác HBA ~ tam giác ABC (g.g)
b. Xét tam giác ABC vuông tại A, có:
AB2 + AC2 = BC2 (định lý Py-ta-go)
32 + 42 = BC2 (thay số)
BC2 = 25
=> BC = 5
Vậy...