K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

                                                       Bài giải

A B C D N M E

a) VÌ MN là đường trung bình của tam giác BDC nên MN//DC hay MN//DE (1)
EN là đường trung bình của tam giác BDC nên EN//DB hay EN//DM (2)
Từ (1) và (2) suy ra MNED là hình bình hành (các cạnh đối song song)

b) Do MNED là hình bình hành nên MN//DE hay MN//AE nên AMNE là hình thang (3)
ABD là tam giác vuông có AM là đường trung tuyến thuộc cạnh huyền
nên AM=MB=MD nên tam giác MAD cân tại M => ^MAD=^MDA
mà ^MAD=^NEA (đồng vị) => ^MAE=^NEA (4)
Từ (3), (4) suy ra AMNE là hình thang cân (hình thang có hai góc kề đáy bằng nhau)

c) Hình bình hành MNED là hình thoi khi MN=ED mà MN = DC/2; NE=BD/2 (t/c đường trung bình tam giác) nên MN=ED <=> DC=BD
tức là tam giác BDC cân tại D => ^DBC=^DCB
mà BD là phân giác nên ABC=2BCA. Do ^B+^C=90 độ
suy ra ^B = 60 độ
Vậy tam giác vuông ABC có thêm điều kiện là góc B bằng 60 độ thì MNED là hình thoi.

21 tháng 12 2021

MNED là hình thoi khi MN = MD

=> 1/2 DC = 1/2 BD 

=> DC = BD

nên suy ra tam giác BDC cân tại D 

=> ^OBC = ^BCD =^BCA

=> ^DBC = ^ACB

=>1/2 ^ABC = ^ACB

=> ^ABC = 2 ^ACB

Vậy điều kiện của MNED là thoi thì tam giác ABC phải có ^ABC = 2 ^ACB

1 tháng 12 2017

Tự vẽ hình nha!

a)Ta có: Tam giác BCD có BM=MD( giả thiết đã cho)

=> MN là đường trung bình =MN//DC=MN//DE      

Mà MN=1/2DC

<=> MN=DE

Vậy  MNED là hình bình hành

b) Ta thấy: MNED là hình bình hành =MD//NE=DEN

=> Tam giác ABD vuông tại A thì có BM=DM=>AM là đường trung tuyến 

=>AM=1/2BD=MD

-Tam giác ADM cân tại M =>MDA=DAM

                                        =>DEN=MAD

<=> MN//DE=>MN//AE=>AMNE (hình thang)

Vậy AMNE là hình thang cân

4 tháng 12 2016
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh

b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân

c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
  
1 tháng 12 2016
  1. Bài 1
    a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
    và MN=1/2DC => MN= DE(2)
    từ (1)và (2) => MNED là hbh

    b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
    Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
    => tam giác ADM cân tại M => MDA = DAM
    => DEN= MAD (3)
    MN//DE=> MN//AE => AMNE là hình thang (4)
    từ (3)và (4) => AMNE là hình thang cân

    c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
    Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
     nhuquynhdat, 17 Tháng mười hai 2013#2 
  2. nhuquynhdat

    nhuquynhdatGuest

     

    bài 2

    a) AB//CD => AB//CE(1)
    Xét tam giác ADE có AH là đg` cao
    lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
    => tam giác ADE cân tại A
    => ADE=AED(goác đáy tam giác cân)
    mặt khác ABCD là hình thang cân => ADC=góc C
    => góc C= AED
    mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
    từ (1)và (2) => ABCE là hbh

    b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
    DH=HE(gt)
    AE//DF(gt)=> AEH=FDH(SLT)
    =>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF

    c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
    mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
    lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

a) Xét tứ giác MBPA có 

N là trung điểm của đường chéo BA

N là trung điểm của đường chéo MP

Do đó: MBPA là hình bình hành

b) Xét ΔBCA có 

M là trung điểm của BC

N là trung điểm của BA

Do đó: MN là đường trung bình của ΔBCA

Suy ra: MN//CA và \(MN=\dfrac{CA}{2}\)

mà P\(\in\)MN và \(MN=\dfrac{MP}{2}\)

nên MP//CA và MP=CA

Xét tứ giác PACM có 

MP//CA(cmt)

MP=CA(cmt)

Do đó: PACM là hình bình hành

mà \(\widehat{MCA}=90^0\)

nên PACM là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật

8 tháng 12 2017

a) VÌ MN là đường trung bình của tam giác BDC nên MN//DC hay MN//DE (1)
EN là đường trung bình của tam giác BDC nên EN//DB hay EN//DM (2)
Từ (1) và (2) suy ra MNED là hình bình hành (các cạnh đối song song)

b) Do MNED là hình bình hành nên MN//DE hay MN//AE nên AMNE là hình thang (3)
ABD là tam giác vuông có AM là đường trung tuyến thuộc cạnh huyền
nên AM=MB=MD nê tam giác MAD cân tại M => ^MAD=^MDA
mà ^MAD=^NEA (đồng vị) => ^MAE=^NEA (4)
Từ (3), (4) suy ra AMNE là hình thang cân (hình thang có hai góc kề đáy bằng nhau)

c) Hình bình hành MNED là hình thoi khi MN=ED mà MN = DC/2; NE=BD/2 (t/c đường trung bình tam giác) nên MN=ED <=> DC=BD
tức là tam giác BDC cân tại D => ^DBC=^DCB
mà BD là phân giác nên ABC=2BCA. Do ^B+^C=90 độ
suy ra ^B = 60 độ
Vậy tam giác vuông ABC có thêm điều kiện là góc B bằng 60 độ thì MNED là hình thoi.

8 tháng 12 2017

mơn pn nhìu nha ^^

30 tháng 11 2021

a: Xét ΔHAB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình của ΔHAB

Suy ra: MN//AB