K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

Ta có \(BC=BD+CD=35\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}CD\)

Áp dụng PTG: \(BC^2=1225=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)

\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\\ \Rightarrow AB=\dfrac{3}{4}\cdot28=21\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=12,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=22,4\left(cm\right)\end{matrix}\right.\)

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{9}{16}\)

\(\Leftrightarrow BH=\dfrac{9}{16}CH\)

Ta có: BH+CH=35

\(\Leftrightarrow CH\cdot\dfrac{25}{16}=35\)

\(\Leftrightarrow CH=22.4\left(cm\right)\)

\(\Leftrightarrow BH=\dfrac{9}{16}\cdot22.4=12.6\left(cm\right)\)

7 tháng 2 2018

Tìm được  H B = 75 7 cm; HC = 21cm

NV
20 tháng 8 2021

\(\dfrac{AB}{AC}=\dfrac{5}{7}\Rightarrow AB=\dfrac{5AC}{7}\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5}{7}AC\right)^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow AC^2=666\Rightarrow AC=3\sqrt{74}\)

\(\Rightarrow AB=\dfrac{15\sqrt{74}}{7}\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\dfrac{222}{7}\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=21\left(cm\right)\)

\(CH=BC-BH=\dfrac{75}{7}\left(cm\right)\)

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{5}\)

nên \(AB=\dfrac{3}{5}AC\)

Ta có: BD+CD=BC(D nằm giữa B và C)

nên BC=36+60=96(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(\dfrac{3}{5}AC\right)^2+AC^2=96\)

\(\Leftrightarrow\dfrac{34}{25}AC^2=96\)

\(\Leftrightarrow AC^2=\dfrac{1200}{17}\)

\(\Leftrightarrow AB=\dfrac{3}{5}AC=\dfrac{3}{5}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{12\sqrt{51}}{17}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC nên 

\(\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)

\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{432}{17}:\dfrac{1200}{17}=\dfrac{432}{1200}=\dfrac{9}{25}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot96=\dfrac{12\sqrt{51}}{17}\cdot\dfrac{20\sqrt{51}}{17}=\dfrac{720}{17}\)

hay \(AH=\dfrac{15}{34}\left(cm\right)\)

7 tháng 7 2021

tại sao tam giác ABC vuông tại A có AH là đg cao ứng với cạnh huyền BC thì suy ra cái kia

giải thích đc không

17 tháng 11 2015

tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4

BC=15+20=35

AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25

=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)

tam giác vuông ABC có AH là đường cao 

BH=\(\frac{AB^2}{BC}=12.6\)

tick nhaaaaaaaaaaaaaaaaaaa

30 tháng 7 2016

cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD. 

a, Tính AD

b, Gọi H là hình chiếu của A trên BC. Tính AH, HB

c, Cm tam giác AID cân

21 tháng 11 2015

tớ làm được rùi . cảm ơn

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)

\(\Leftrightarrow HB=\dfrac{9}{16}HC\)

Ta có: \(HB+HC=BC\)

\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)

\(\Leftrightarrow HC=22.4\left(cm\right)\)

\(\Leftrightarrow HB=12.6\left(cm\right)\)

14 tháng 9 2017

Nguyễn Thị Thơm bn tham khảo ở đây nhé:

Theo hệ thức lượng tam giác vuông 

AC2 = HC x BC = 16 x BC

AH2 = HC x BH = 16 x BH

1/AH2 = 1/AC2 + 1/AB2

Thay 1,2 vào 3 

1/16 x BH = 1/16 x BC + 1/152

Mặt khác:

BH = BC - HC = BC - 164

Thay vào 4

1/16 x ( BC - 16 ) = 1/16 x BC + 1/225

<=> 1/( BC - 16 ) - 1/BC = 16/225 

<=> ( BC - BC + 16 )/(( BC - 16 ) x BC )

=> BC = 25 ( thỏa mãn ) BC = -9 ( loại ) 

Thay vào 1 ta có AC = 20 cm

 2 ta có AH = 12 cm

Vậy: AH = 12 cm