K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

a) -△DBE và △ACE có: \(\widehat{BDE}=\widehat{CAE};\widehat{BEC}\) là góc chung.

\(\Rightarrow\)△DBE∼△ACE (g-g).

b) △DBE∼△ACE \(\Rightarrow\dfrac{EB}{EC}=\dfrac{ED}{EA}\Rightarrow\dfrac{EB}{ED}=\dfrac{EC}{EA}\)

-△EAD và △ECB có: \(\dfrac{EB}{ED}=\dfrac{EC}{EA};\widehat{BEC}\) là góc chung.

\(\Rightarrow\)△EAD∼△ECB (c-g-c) nên \(\widehat{EAD}=\widehat{ECB}\)

c) EM cắt BC tại F.

-△BCE có: 2 đường cao BD và CA cắt nhau tại M.

\(\Rightarrow\)M là trực tâm của △BCE.

\(\Rightarrow\)EM⊥BC tại F.

-△BMF và △BCD có: \(\widehat{DBC}\) là góc chung, \(\widehat{BFM}=\widehat{BDC}=90^0\).

\(\Rightarrow\)△BMF∼△BCD (g-g).

\(\Rightarrow\dfrac{BM}{BC}=\dfrac{BF}{BD}\Rightarrow BM.BD=BC.BF\left(1\right)\)

-△CMF và △CBA có: \(\widehat{CFM}=\widehat{CAB}=90^0,\widehat{CBA}\) là góc chung.

\(\Rightarrow\)△CMF∼△CBA (g-g).

\(\Rightarrow\dfrac{CM}{CB}=\dfrac{CF}{CA}\Rightarrow CM.CA=CB.CF\left(2\right)\)

-Từ (1) và (2) suy ra:

\(BM.BD+CM.CA=BC.BF+CB.CF=BC\left(BF+CF\right)=BC.BC=BC^2\)

không đổi.

a: Xét ΔABC vuông tại A và ΔEAC vuông tại E có

góc C chung

=>ΔABC đồng dạng với ΔEAC

Xét ΔABC vuông tại A có AE là đường cao

nên AE^2=BE*CE

b: Xét tứ giác AEDC có

góc AEC=góc ADC=90 độ

=>AEDC là tứ giác nội tiếp

=>góc EAD=góc BCO

 

a: Xét ΔAFE vuông tại A và ΔDFC vuông tại D có

góc AFE=góc DFC

=>ΔAFE đồng dạng với ΔDCF

b: Xét ΔAEF vuông tại A và ΔACB vuông tại A có

góc AEF=góc ACB

=>ΔAEF đồng dạng với ΔACB

=>EF/CB=AE/AC
=>EF*AC=AE*CB