K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

TK:

Ta có tam giác vuông ABC với đường cao AH.

Theo định nghĩa, đường cao AH là đoạn thẳng vuông góc với cạnh đối diện và đi qua đỉnh của tam giác.

Vì tam giác ABC vuông tại A, nên AH là đường cao của tam giác.

Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:

\(AB^2+AC^2=BC^2\)

\(4^2+7,5^2=BC^2\)

\(16+56,25=BC^2\)

\(72,25=BC^2\)

\(BC\approx8,5cm\)

Vì AH là đường cao của tam giác ABC, nên AH chia BC thành hai đoạn HB và HC.

\(HB=BC\times\left(\dfrac{AB}{AC}\right)\)

\(HB=8,5\times\left(\dfrac{4}{7,5}\right)\)

\(HB\approx4,53cm\)

\(HC=BC-HB\)

\(HC=8,5-4,53\)

\(HC\approx3,97cm\)

Vậy \(HB\approx4,53cm\) và \(HC\approx3,97cm\)

12 tháng 10 2017

tam giác ABC vuông tại A
=>tanB=\(\dfrac{AC}{AB}=\dfrac{7.5}{4}=1.875\)
=>gócB=62 độ
=>gócC=90-62=28 độ
tam giác ABH có góc H=90 độ
=>cosB=\(\dfrac{BH}{AB}=\dfrac{BH}{4}=0.47\)
=>BH=4*0.47=1.88cm
\(AB^2=BH\cdot BC\)
hay \(4^2=1.88\cdot BC\)
=>BC=\(\dfrac{16}{1.88}\)=8.5cm
=> HC=BC-BH=6.62cm

15 tháng 10 2017

bạn vẽ hình nha mk ko biết vẽ sorry

Áp dung định lí pytago vào tam giác ABC vuông tại A đường cao AH ta có:

\(AB^2+AC^2=BC^2\)

hay \(4^2+3^2=BC^2\)

\(\Rightarrow BC^2=16+9\)

\(\Rightarrow BC^2=25\)

\(\Rightarrow BC=5\left(cm\right)\)

Áp dụng hệ thức giữa cạnh và đường vào tam giác vuông \(ABC\)vuông tại \(A\) đường cao \(AH\) ta có:

+  \(AB^2=BH.BC\)

hay \(4^2=HB.5\)

\(\Rightarrow HB=16:5\)

\(\Rightarrow HB=3,2\left(cm\right)\)

\(AC^2=HC.BC\)

hay \(3^2=HC.5\)

\(\Rightarrow HC=9:5\)

\(\Rightarrow HC=1,8\left(cm\right)\)

  vậy \(HB=3,2cm\)

           \(HC=1,8cm\)

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Lời giải:
Áp dụng định lý Pitago cho tam giác vuông $ABH$:

$BH=\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông:

$AH^2=BH.CH\Rightarrow CH=\frac{AH^2}{BH}=\frac{4^2}{3}=\frac{16}{3}$ (cm)

$BC=BH+CH=3+\frac{16}{3}=\frac{25}{3}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{4^2+(\frac{16}{3})^2}=\frac{20}{3}$ (cm)

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Hình vẽ:

16 tháng 9 2021

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=\dfrac{AH^2}{BH}=\dfrac{16}{3}\left(cm\right)\\AB^2=3\left(3+\dfrac{16}{3}\right)=25\left(cm\right)\\AC^2=\dfrac{16}{3}\left(3+\dfrac{16}{3}\right)=\dfrac{400}{9}\left(cm\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}HC=\dfrac{16}{3}\left(cm\right)\\AB=5\left(cm\right)\\AC=\dfrac{20}{3}\left(cm\right)\end{matrix}\right.\)

\(BC=\sqrt{AB^2+AC^2}=\dfrac{25}{3}\left(cm\right)\left(pytago\right)\)

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

19 tháng 9 2021

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)