Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Từ A kẻ đường cao ( hoặc đường trung tuyến , phân giác) cắt HK tại I
Xét tam giác AIH và tam giác AIK có :
^A1 = ^A2 ( AI là đường cao của ^A)
AI cạnh chung
suy ra : tam giác AIH = tam giác AIK( Cạnh góc vuông - Góc nhọn)
suy ra : AK = AH ( 2 cạnh tương ứng )
chú ý : ^ là góc , ngoài ra có thể chứng minh theo trường hợp khác như g-c-g
Nối A và E lại ta có tam giác BAE cân tại B (vì BE=BA). Ta có góc BAE + góc CAE = góc ABC
=90 độ. Mặt khác góc CAE + góc AEK = góc EKA = 90 độ => góc BAE = góc AEK. Mà góc BAE = góc BEA (tam giác BAE cân tại B) => góc AEK = góc BEA. Xét tam giác vuông AHE và AKE bằng nhau theo trường hợp cạnh góc vuông (AE chung) góc nhọn kề (góc AEK = góc BEA) => AK = AH (đpcm)
a: Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc B=góc C
=>ΔBHD=ΔCKE
=>HD=EK
b: Xét ΔAHD vuông tại H và ΔAKE vuông tại K có
AH=AK
HD=EK
=>ΔAHD=ΔAKE
=>AD=AE
a/ Ta có \(\widehat{A}=180^o-\widehat{B}-\widehat{C}\)(tổng ba góc của một tam giác)
=> \(\widehat{A}=180^o-40^o-50^o\)
=> \(\widehat{A}=90^o\)=> \(\Delta ABC\)vuông tại A
=> AB2 + AC2 = BC2 (định lí Pitago)
=> AC2 = BC2 - AB2
=> AC2 = 122 - 92
=> AC2 = 144 - 81
=> AC2 = 63
=> AC = \(\sqrt{63}\)(cm)