Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta\) DKC và \(\Delta\) BKA có :
BK=KC
AK=KD
BKA=DKC(đối đỉnh)
=> \(\Delta\) DKC = \(\Delta\) BKA (c-g-c)
=> góc dck = góc bka ( 2 góc tương ứng )
mà góc dck và góc bka ở vị trí so le trong nên ba//dc
mà ba vuông góc với ac => dc vuông góc với ac (đlý)
b) ta có: \(\Delta\) dkc = \(\Delta\) bka (cmt câu a)
=> dc = ba ( 2 cạnh tương ứng)
xét tam giác abh vuông tại a và tam giác cdh vuông tại d có
ah=hc(gt)
ab=dc(cmt)
=>tam giác ahb = tam giác chd (c-g-c)
a) xét tứ giác ABDC ta có : BK=KC=KD=KA
=> ABDC là hình chữ nhật
=> CD // AB
tự vẽ hình nha
a) xét 2 tam giác BKA và CKD có:
BK=CK (K là TĐ của BC)
2 góc BKA=CKD (đối đỉnh)
KA=KD(gt)
=> 2 tam giác BKA=CKD(c.g.c) => góc ABK=góc DCK(2 góc tương ứng)
mà 2 góc này ở vị trí so le trong => AB//CD
b) 2 tam giác ABK=DCK(theo a) => BA=CD(2 cạnh tương ứng)
ta có AB//CD mà BA vuông góc với AC => DC vuông góc với AC
xét 2 tam giác ABH và CDH có:
góc BAH=góc DCH(=90độ)
BA=CD(chứng minh trên)
AH=CH(H là TĐ của AC)
=> 2 tam giác ABH=CDH(c.g.c)
2 tam giác ABH=CDH(theo b) => 2 góc AHB=CHD(2 góc tương ứng)
xét 2 tam giác BAC và DCA có:
góc BAC=góc DCA(=90độ)
BA=DC(2 tam giác BKA=CKD)
cạnh AC chung
=> 2 tam giác BAC=DCA(c.g.c) => 2 góc BCA=DAC(2 góc tương ứng)
xét 2 tam giác AMH và CNH có:
góc MAH =góc NCH (chứng minh trên )
HA=HC (H là TĐ của AC)
góc AHB = góc CHD( chứng minh trên)
=> 2 tam giác AMH =CNH(g.c.g) => MH=NH(2 cạnh tương ứng) => tam giác MHN cân ở H
c) Xem lại đề
bạn tự vẽ hình nha
a) xét 2 tam giác BKA và CKD có:
BK=CK (K là TĐ của BC)
2 góc BKA=CKD (đối đỉnh)
KA=KD(gt)
=> 2 tam giác BKA=CKD(c.g.c)
=> góc ABK=góc DCK(2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD
b) 2 tam giác ABK=DCK(theo a)
=> BA=CD(2 cạnh tương ứng)
ta có AB//CD
mà BA vuông góc với AC
=> DC vuông góc với AC
xét 2 tam giác ABH và CDH có:
góc BAH=góc DCH(=90độ)
BA=CD(chứng minh trên)
AH=CH(H là TĐ của AC)
=> 2 tam giác ABH=CDH(c.g.c)
c) 2 tam giác ABH=CDH(theo b)
=> 2 góc AHB=CHD(2 góc tương ứng)
xét 2 tam giác BAC và DCA có:
góc BAC=góc DCA(=90độ)
BA=DC(2 tam giác BKA=CKD)
cạnh AC chung
=> 2 tam giác BAC=DCA(c.g.c)
=> 2 góc BCA=DAC(2 góc tương ứng)
xét 2 tam giác AMH và CNH có:
góc MAH =góc NCH (chứng minh trên )
HA=HC (H là TĐ của AC)
góc AHB = góc CHD( chứng minh trên)
=> 2 tam giác AMH =CNH(g.c.g)
=> MH=NH(2 cạnh tương ứng)
=> tam giác MHN cân ở H