Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
b) Ta có: ΔABC vuông tại A(gt)
⇒\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)
Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)
\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)
Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)
nên ΔEBC cân tại E(định lí đảo của tam giác cân)
⇒EB=EC
Xét ΔEBH vuông tại H và ΔECH vuông tại H có
EB=EC(cmt)
EH chung
Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)
⇒HB=HC(hai cạnh tương ứng)
c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)
nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)
\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)
Ta có: ΔEBH=ΔECH(cmt)
⇒\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)
mà \(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)
nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)
\(\Leftrightarrow\widehat{KEH}=60^0\)
Ta có: HK//BE(gt)
⇒\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)
mà \(\widehat{BEH}=60^0\)(cmt)
nên \(\widehat{KHE}=60^0\)
Xét ΔKHE có
\(\widehat{KEH}=60^0\)(cmt)
\(\widehat{KHE}=60^0\)(cmt)
Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)
d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))
nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
hay EI>EA
mà EA=EH(ΔBAE=ΔBHE)
nên IE>EH(đpcm)
a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:
\(\widehat{AHM}=\widehat{AKM}=90^o\)
AM cạnh chung
\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))
\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)
`=> AH = AK` (2 cạnh tương ứng) (1)
Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)
\(\widehat{KAM}+\widehat{BAM}=90^o\)
\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)
Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))
\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)
\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\) (2)
Từ (1), (2) ta có đpcm
b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:
\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)
HM = KM (vì \(\Delta AHM=\Delta AKM\))
\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)
\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)
`=> HI = CK` (2 cạnh tương ứng)
Mà AH = AK (cmt)
`=> AH + HI = AK + CK`
`=> AI = AC`
\(\Rightarrow\Delta ACI\) cân tại A
AM là đường phân giác của \(\Delta ACI\) cân tại A
`=> AM` cũng là đường cao
\(\Rightarrow AM\perp CI\) (3)
Vì AH = AK nên \(\Delta AHK\) cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)
\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)
Mà 2 góc này ở vị trí đồng vị
`=>` HK // CI (4)
Từ (3), (4) ta có đpcm
bài này mình làm rồi nhé bạn.Để mình chỉ cho bạn nha
1)Xét tam giác BAE và tam giác BKE:
BEA = BEK = 90 độ
BE chung
ABE = KBE ( BE là phân giác của B )
=> Tam giác BAE = Tam giác BKE( g-c-g)
=> BA = BK( 2 cạnh tương ứng)
=> Tam giác ABK cân ở B
2)Xét tam giác ABD và tam giác KBD:
BA = BK ( cm trên)
ABD = KBD ( BD là phân giác của B)
BD chung
=> Tam giác ABD = Tam giác KBD ( c-g-c)
=> BAD = BKD = 90 độ
=>KDB = KDC = 90 độ
=> KD vuông góc với BC
3) Ta thấy : BAD + ADB + DBA = 180 độ
=> ADB + DBA = 90 độ (1)
Mà AIE = BIH ( 2 góc đối đỉnh)
Mà BIH + IHB +HBI = 180 độ
=> BIH + HBI = 90 độ (2)
Mà DBA = HBI ( BD là phân giác của B ) (3)
Từ (1),(2) và (3) => AID = ADI (4)
=> Tam giác DAI cân ở A
=> AI = AD
Xét tam giác vuông IAE (vuông ở E) và tam giác vuông DAE( vuông ở E)
AI = AD
AE chung
=> tam giác IAE = tam giác DAE(ch-cgv)
=> DAE = IAE ( 2 góc tương ứng)
=> AE là phân giác IAD
=> AK là phân giác HAC
4) Xét tam giác IAE và tam giác KAE:
AEI = KEI
EI chung
AE=EK(2 cạnh tương ứng)
=> Tam giác IAE = Tam giác KAE
=> AIE = KIE ( 2 góc tương ứng) (5)
Từ (4) và (5) =>KIE = EAD
Mà 2 góc này ở vị trí so le trong
=> IK song song với AC
Mình làm bài này là để bạn hiểu nha ko hiểu thì nói mình
(Dấu gạch ngang trên đầu thay cho dấu góc)
HUHUHUHU....... Lúc làm bài kiểm tra chưa nghĩ ra,h mới nghĩ ra
+)Xét tam giác ABE vuông tại A và tam giác HBE vuông tại H có:
BE: chung
ABE=HBE (BE là tia phân giác của ABC)
=>Tam giác ABE=tam giác HBE (cạnh huyền-góc nhọn)
=>AB=HB (2 cạnh tương ứng)
=>Tam giác ABH cân tại B.
+)Vì tam giác AEK= tam giác HEC nên AE=HE (2 cạnh tương ứng) Xét tam giác AEK vuông tại A và tam giác HEC vuông tại H có:
AEK=HEC (2 góc đối đỉnh)
AE=HE (cmt)
=>tam giác AEK=tam giác HEC (cạnh góc vuông-góc nhọn)