Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔAHB∼ΔCAB(g-g)
a: ΔACB vuông tại A co AH vuông góc BC
nên AB^2=BH*BC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=16/8=2
=>AD=6cm
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
b: BD là phân giác
=>BC/AB=DC/DA
Xét ΔHAC có DE//AH
nên EC/EH=DC/DA
=>BC/AB=EC/EH
=>AB/EH=BC/EC
c: AC=căn 20^2-12^2=16cm
DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=16/8=2
=>DA=6cm; DC=10cm
S BAC=1/2*12*16=96cm2
S BAD=1/2*6*12=36cm2
=>S BDC=60cm2
a) Xét ΔCHA và ΔCAB ta có:
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\Rightarrow\Delta CHA\)∼\(\Delta CAB\left(g.g\right)\)
b)Xét ΔABC vuông tại A, áp dụng địn lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2\)
\(=20^2-16^2\)
\(=144\)
\(\Rightarrow AB=\sqrt{144}=12cm\)
vì ΔCHA∼ΔCAB(cmt)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AC}{CH}=\dfrac{BC}{AC}hay\dfrac{12}{AH}=\dfrac{16}{CH}=\dfrac{20}{16}=\dfrac{5}{4}\)
Suy ra:
\(AH=\dfrac{12.4}{5}=9,6cm\)
\(CH=\dfrac{16.4}{5}=12,8cm\)
Xét ΔAHC có AD là phân giác ta có:
\(\dfrac{AH}{HD}=\dfrac{AC}{DC}=\dfrac{AH+AC}{CH}hay\dfrac{9,6}{HD}=\dfrac{16}{DC}=\dfrac{16+9,6}{12,8}=2\)
\(\Rightarrow DC=\dfrac{16}{2}=8cm\)