Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,BC=HB+HC=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=225\\AC^2=CH\cdot BC=400\\AH^2=BH\cdot CH=144\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{BAC}=90^0\) nên ADHE là hcn
Do đó \(DE=AH=12\left(cm\right)\)
a) + AH2 = BH.CH = 9.16 = 144 AH = 12cm
+ AB2 = BH. BC = 9.25 AB = 15cm
+ AC2 = CH.BC = 16.25 AC = 20cm
b) Chứng minh được tứ giác ADHE là hình chữ nhật
c) +HD.AB = HA.HB HD = HA.HB/AB= 12.9/15 = 7,2cm
+HE.AC = HA.HC HE = HA.HC /AC = 12.16/20 = 9,6cm
+ Chu vi ADHE: (HD + HE ).2 = (7,2 + 9,6).2 = 33,6(cm)
+ SADHE = HD.HE = 7,2. 9,6 = 69,12(cm2)
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
Δ ABC vuông tại A đường cao AH
⇒BH.CH=\(AH^2\)⇒AH=\(\sqrt{9\cdot16}\)=12 cm
BC=CH+BH=9+16=25 cm
\(AB^2\)=BH.BC=9.25=225⇒AB=15 cm
\(AC^2\)=CH.BC=16.25=400⇒AC=20 cm
Ta có:góc A=góc E =góc D=90 nên tứ giác ADHE là hcn
⇒góc AED=góc AHD (1)
lại có:góc AHD=góc ABC (cùng phụ với góc DHB) (2)
Từ (1) và (2) suy ra góc AED = góc ABC
Xét Δ AED và Δ ABC có
góc A chung
góc AED = góc ABC (cmt)
Nên Δ AED = Δ ABC
⇒\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)⇔AE.AC=AB.AD
c: Xét ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔHAB vuông tại H có HD là đường cao ứng với cạnh huyền BA
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)