Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(1\right)\)
Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC
nên \(AD\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)
Bạn tự vẽ hình :)
a) Ta có : AB = Cos 60 . BC = 1/2 . 12 = 6 cm
AC = Sin 60 . BC = \(\frac{\sqrt{3}}{2}.12=6\sqrt{3}\)
b) BE là tia p/g góc B nên ta có góc ABE = góc EBC = 30 độ
AE = tan 30 . AB = ...
BH = Cos 60. AB = ....
Suy ra AE . AC =BH.BC (bạn tự thay số vào tính)
c) Hãy chứng minh D là trung điểm AH
Sau đó áp dụng tính chất đường trung bình để suy ra DM , DN , MN song song với BC và áp dụng tiên đề Ơ-Clit là ra :)
Giúp mik câu c với ạ
a: BC=15cm
AH=7,2cm