K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

a: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

nên AEDF là hình chữ nhật

b: Xét ΔABC có CF/CA=CD/CB

nên DF//AB và DF=AB/2

=>Di//AB và DI=AB

=>ABDI là hình bình hành

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

23 tháng 12 2016

a)

D là trung điểm của BC (gt)

mà DF // AB (AB _I_ AC; DF _I_ AC)

=> F là trung điểm của AC

mà D là trung điểm của BC (gt)

=> DF là đường trung bình của tam giác CAB

=> DF = \(\frac{1}{2}\)AB = 10 : 2 = 5 (cm)

b)

D là trung điểm của BC

mà DE // AC (DE _I_ AB; AC _I_ AB)

=> E là trung điểm của AB

mà E là trung điểm của MD (M đối xứng D qua AB)

=> ADBM là hình bình hành

mà AB _I_ MD (M đối xứng D qua AB)

=> ADBM là hình thoi

c)

DEA = EAF = AFD = 900

=> AEFD là hình chữ nhật

=> AEFD là hình vuông

<=> AD là tia phân giác của BAC

mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)

=> Tam giác ABC vuông cân tại A

23 tháng 12 2016

Bạn tự vẽ hình nha!!!

Ta có:

\(AC \perp AB\) (\(\Delta ABC\) vuông tại A (gt))

\(AC \perp DF\) (gt)

\(\Rightarrow\) AB // DF (Định lí 1 bài từ vuông góc đến song song)

mà D là trung điểm BC (gt)

\(\Rightarrow\) F là trung điểm của AC (Định lí 1 bài đường trung bình của tam giác)

Xét \(\Delta ABC\) có:

D là trung điểm BC (gt)

F là trung điểm của AC (cmt)

\(\Rightarrow\) DF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow DF=\frac{AB}{2}=\frac{10}{2}=5\left(cm\right)\)

b) Chứng minh tương tự ta có E là trung điểm AB

Xét tứ giác ADBM có:

\(\Rightarrow EM=ED\) (M đối xứng với D qua AB (gt))

\(EA=EB\left(cmt\right)\)

MD giao AB tại E (gt)

\(\Rightarrow\) Tứ giác ADBM là hình bình hành (dhnb)

\(AB \perp MD\) (M đối xứng với D qua AB (gt))

\(\Rightarrow\) Tứ giác ADBM là hình thoi (dhnb)

c) Xét tứ giác AEDF có:

\(\widehat{EAF} = 90^0\) (\(\Delta ABC\) vuông tại A (gt))

\(\widehat{AED} = 90^0\) (\(MD \perp AB\))

\(\widehat{AFD} = 90^0\) (\(DF \perp AC\))

\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật (dhnb)

Để hình chứ nhật AEDF

\(\Leftrightarrow\) AEDF là hình thoi

\(\Leftrightarrow\) AD là tia phân giác của \(\Delta ABC\) (vì AD là đường trung tuyến)

\(\Leftrightarrow\) \(\Delta ABC\) cân tại A (vì \(\Delta ABC\) vuông tại A (gt))

\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A

 

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔABC có 

D là trung điểm của BC

DE//AC

Do đó: E là trung điểm của AB

Xét tứ giác AIBD có 

E là trung điểm của AB

E là trung điểm của ID

Do đó: AIBD là hình bình hành

mà AB\(\perp\)DI

nên AIBD là hình thoi

6 tháng 2 2022

em xin câu b

6 tháng 2 2022

giúp với

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

mà AD là đường phân giác

nên AEDF là hình vuông

 

6 tháng 2 2022

em xin câu b ạ

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

nen AH=DE

c: Để ADHE là hình vuông thì AH là phân giác của góc DAE
=>ΔABC cân tại A

=>AB=AC