K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

undefined

Xét tứ giác AFME có

\(\widehat{EAF}=90^0\)

\(\widehat{AEM}=90^0\)

\(\widehat{AFM}=90^0\)

Do đó: AFME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

a) Xét tứ giác AEMF có

\(\widehat{EAF}=90^0\)(gt)

\(\widehat{AEM}=90^0\)(gt)

\(\widehat{AFM}=90^0\)(gt)

Do đó: AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC có

M là trung điểm của BC(gt)

MF//AB(cùng vuông góc với AC)

Do đó: F là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(cmt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AE=MF(AFME là hình chữ nhật)

nên \(AE=\dfrac{AB}{2}\)

mà A,E,B thẳng hàng(gt)

nên E là trung điểm của AB

Ta có: F là trung điểm của NM(gt)

nên \(MN=2\cdot MF\)(1)

Ta có: E là trung điểm của AB(cmt)

nên AB=2AE(2)

Ta có: AEMF là hình chữ nhật(cmt)

nên MF=AE(Hai cạnh đối)(3)

Từ (1), (2) và (3) suy ra MN=AB

Xét tứ giác ABMN có 

MN//AB(cùng vuông góc với AC)

MN=AB(cmt)

Do đó: ABMN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

Do đó: ΔAEM=ΔAFM

=>AE=AF

c: Xét ΔAMF vuông tại F và ΔADF vuông tại F có

AF chung

MF=DF

Do đó: ΔAMF=ΔADF

=>góc MAF=góc DAF

=>góc DAF=góc BAM

28 tháng 1 2018

Làm ơn làm hộ mình mà. Mình đang cần gấp.😥

a: Xét ΔAMC và ΔAMB có

AM chung

MC=MB

AC=AB

Do đó: ΔAMC=ΔAMB

b: Xét ΔAEM vuông tại E và ΔAQM vuông tại Q có

AM chung

\(\widehat{EAM}=\widehat{QAM}\)

Do đó: ΔAEM=ΔAQM

c: Ta có: ΔAEM=ΔAQM

nên AE=AQ

Xét ΔABC có AE/AB=AQ/AC

nên EQ//BC

15 tháng 3 2022

Hehe cảm ơn cậu