K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)

c) Ta có: ΔADH vuông tại H(gt)

nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)

Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔBAD cân tại B(Định lí đảo của tam giác cân)

11 tháng 3 2020

a) bạn tự vẽ hình nhé

sau khi kẻ, ta có AC=AH+HC=11

mà tam giác ABH vuông tại H

=> theo định lý Pytago => AH^2+BH^2=AB^2

=>BH=căn bậc 2 của 57

cũng theo định lý Pytago

=>BC^2=HC^2+BH^2

=>BC=căn bậc 2 của 66

11 tháng 3 2020

b) bạn tự vẽ hình tiếp nha

ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A

=>AM=MB=MC

theo định lý Pytago =>do tam giác HAM vuông tại H

=>HM^2+HA^2=AM^2

=>HM=9 => HB=MB-MH=32

=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624

tương tự tính được AC=căn bậc 2 của 4100

=> AC/AB=5/4

CHÚC BẠN HỌC TỐT!!!

4 tháng 5 2022

a) Áp dụng ĐL Pytago ta có: \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Xét \(\Delta ABH\) và \(\Delta ADH\) có: 

\(AH\) chung

\(\widehat{AHB}=\widehat{AHD}=90^0\)

\(BH=DH\) (gt)

\(\Rightarrow\Delta ABH=\Delta ADH\left(c.g.c\right)\)

c) Do \(\Delta ABH=\Delta ADH\Rightarrow\widehat{B}=\widehat{ADH}\) mà \(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\widehat{EDC}=\widehat{B}\)

Lại có \(BA//DK\) (do cùng vuông góc \(AC\)\(\Rightarrow\widehat{KDC}=\widehat{B}\) (đồng vị)

Xét \(\Delta DKC\) và \(\Delta DEC\) có:

\(\widehat{DKC}=\widehat{DEC}=90^0\)

\(CD\) chung

\(\widehat{KDC}=\widehat{EDC}=\widehat{B}\)

\(\Rightarrow\Delta DKC=\Delta DEC\) (ch - gn) \(\Rightarrow DE=DK\)

d) Xét tam giác \(AMC\) có: \(\left\{{}\begin{matrix}MK\perp AC\\AE\perp MC\\MK\cap AE=D\end{matrix}\right.\)

\(\Rightarrow D\) là trực tâm \(\Rightarrow MD\perp AC\) mà \(DK\perp AC\Rightarrow MD\equiv MK\)

\(\Rightarrow MK\perp AC\Rightarrow MK//AB\)

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAK vuông tại A và ΔBIK vuông tại I có

BK chung

góc ABK=góc IBK

=>ΔBAK=ΔBIK

=>KA=KI

c: góc DAI+góc BIA=90 độ

góc CAI+góc BAI=90 độ

mà góc BIA=góc BAI

nên góc DAI=góc CAI

=>AI là phân giác của góc DAC