K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

A B C H E F I K 1 1 1

a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b)  Xét tam giác AEH và tam giác AHB có:

\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)

c) Xét tam giác AHC và tam giác AFH có:

\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)

\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ ) 

\(\Rightarrow AH^2=AC.AF\)

d) Xét tứ giác AEHF có:

\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)

\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )

\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)

Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)

\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)

Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)

Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)

Xét tam giác ABC và tam giác AFE có:

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)

e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)

Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC

\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc)  (6)

Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF

\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc)  (7)

Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)

\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)

13 tháng 3 2022

A B C F E H

Xét ΔAFH và ΔAHC có:

góc HAC chung

AFC=AHC=90 độ (gt)

=>ΔAFH∼ΔAHC(gg)

=>AF/AH=AH/AC

=>AF.AC=AH^2(1)

d,Từ ΔAEH∼ΔAHB

=>AE/AH=AH/AB

=>AE.AB=AH^2(2)

từ 1 và 2=>AE.AB=AF.AC

=>AE/AC=AF/AB

mà góc A chung

=>ΔAEF∼ΔACB(c.g.c)

e,Ta có AE.AB=AH^2

=>AE.6=4.8^2

=>AE=4,8^2/6=3,84

AF.AC=AH^2=>AF.8=4,8^2=>AF=2,8

=>Saef=2,8.3,84.1/2=5,376

Sbcfe=Sabc-Saef=(6.8:2)-5,376=24-3,76=20.24

13 tháng 3 2022

A B C E F H

a,Áp dụng Pytago ta có

BC^2=AB^2+AC^2

BC^2=6^2+8^2=36+64=100

BC=10

Mặt khác :

Sabc=1/2AB.AC=1/2BC.AH

=>AB.AC=BC.AH

=>6.8=10.AH

AH=48/10=4,8

b,Xét △AEH và △AHB có:

góc HAB chung

AEH=AHB=90 độ (gt)

=>ΔAEH ∼ΔAHB

 

 

a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

b: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có

góc EAH chung

Do đó: ΔAEH\(\sim\)ΔAHB

c: Xét ΔAHC vuông tại H có HF là đường cao

nên \(AH^2=AF\cdot AC\left(1\right)\)

d: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AH^2=AE\cdot AB\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay AE/AC=AF/AB

=>ΔAEF\(\sim\)ΔACB

7 tháng 4 2022

giúp mk câu e luôn ạ

 

20 tháng 3 2022

Xét tam giác AEH và tam giác AHB, có:

\(\widehat{AHB}=\widehat{AEH}=90^0\)

\(\widehat{A}:chung\)

Vậy tam giác AEH đồng dạng tam giác AHB ( g.g )

23 tháng 4 2020

tui hoc l 6

23 tháng 4 2020

Ớ hok dốt lắm tớ k bít làm đâu