K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

a)Xét △ABC vuông tại A (gt)

=> BC2 = AB2 + AC2 (định lý Pytago)

     BC2 = 52 + 122 = 25 + 144 = 169

=> BC = \(\sqrt{169}\) = 13 cm

Xét △ABC có BF là tia phân giác của góc ABC (gt)

=>\(\dfrac{AF}{AB}\) = \(\dfrac{FC}{BC}\) (tính chất đường phân giác)

=>\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) và AF + FC = AC = 12

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{AF}{5}\) = \(\dfrac{FC}{13}\) = \(\dfrac{AF+FC}{5+13}\) = \(\dfrac{AC}{18}\) = \(\dfrac{2}{3}\)

=> AF = \(\dfrac{2}{3}\) x 5 = 3,33 cm và FC = \(\dfrac{2}{3}\) x 13 = 8,67 cm

b)Xét △ABF và △HBE có:

góc ABF bằng góc HBE (BF là tia phân giác của góc ABC)

góc BAF bằng góc BHE bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)

=> △ABF ∼ △HBE (g.g)

c) Vì △ABF ∼ △HBE (câu b)

=> góc BFA bằng góc BEH

mà góc AEF bằng góc BEH (2 góc đối đỉnh)

=> góc BFA bằng góc AEF

=> △AEF cân tại A

d)Xét △ABC và △AHB có:

góc ABC chung

góc BAC bằng góc BHA bằng 90o (tam giác ABC vuông tại A và AH ⊥ BC)

=> △ABC ∼ △HBA (g.g)

=> \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (1)

Xét △ABH có BE là tia phân giác của góc ABC (gt)

=>\(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (2) (tính chất đường phân giác)

Từ (1), (2) => \(\dfrac{AB}{BC}\) = \(\dfrac{HE}{AE}\)

=> AB.AE=BC.HE(chắc vậy?)

8 tháng 4 2022

câu d sai đề à????

13 tháng 6 2020

A B C H E F

a)

+)  \(\Delta\)ABC vuông tại A

theo định lí pitago => \(BC=\sqrt{AB^2+AC^2}=13\)

+) BF là tia phân giác ^ABC 

Theo tích chất phân giác: \(\frac{AF}{CF}=\frac{AB}{CB}=\frac{5}{13}\)

=> \(\frac{AF}{5}=\frac{CF}{13}=\frac{AF+CF}{5+13}=\frac{12}{18}=\frac{2}{3}\)

=> AF = 10/3 và CF = 26/3

b) Xét \(\Delta\)ABF và \(\Delta\)HBE có: ^ABF = ^HBE ( tích chất phân giác ) và ^FAB = ^EHB = 90 độ 

=> \(\Delta\)ABF ~ \(\Delta\)HBE 

c) (b) => ^BEH = ^BFA mà ^BEH = ^AEF ( đối đỉnh) 

=> ^AEF = ^BFA = ^EFA 

=> \(\Delta\)AEF cân

Chỉ cần gt,kl và cách làm , ko cần hình vẽ nhé :>>Bài 2:  Cho tam giác ABC vuông tại A có AB = 5cm, AC = 12cm, đường cao AH(H BC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.a) Tính độ dài BC, AF, FC. (Làm tròn kết quả đến chữ số thập phân thứ nhất )b) Chứng minh: rABF đồng dạng với rHBEc) Chứng minh: rAEF când) Chứng minh: AB.FC = BC.AEKQ:  a) 13; 3,3; 8,7Bài 3: Cho tam giác ABC vuông tại A. Biết AB = 9cm, AC =...
Đọc tiếp

Chỉ cần gt,kl và cách làm , ko cần hình vẽ nhé :>>

Bài 2:  Cho tam giác ABC vuông tại A có AB = 5cm, AC = 12cm, đường cao AH(H BC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.

a) Tính độ dài BC, AF, FC. (Làm tròn kết quả đến chữ số thập phân thứ nhất )

b) Chứng minh: rABF đồng dạng với rHBE

c) Chứng minh: rAEF cân

d) Chứng minh: AB.FC = BC.AE

KQ:  a) 13; 3,3; 8,7

Bài 3: Cho tam giác ABC vuông tại A. Biết AB = 9cm, AC = 12cm. Tia phân giác của  cắt cạnh BC tại D. Từ D, kẻ DE vuông góc với AC ( E thuộc AC)

a) Chứng minh rằng hai tam giác CED và CAB đồng dạng

b) Tính tỉ số

c) Tính diện tích tam giác ABD.

KQ:   b) 3/5        c) 162/7

Bài 4:  Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH.

a) CMR: DABC và DHBA đồng dạng với nhau 

b) CMR: AH2 = HB.HC

c) Tính độ dài AH

KQ:   c) 4,8

1

4:

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b Xét ΔABC vuông tại A có AH là đường cao

nen AH^2=HB*HC

c: BC=căn 6^2+8^2=10(cm)

=>AH=6*8/10=4,8cm

a: BC=căn 6^2+8^2=10cm

BF là phân giác

=>FA/AB=FC/BC

=>FA/3=FC/5=(FA+FC)/(3+5)=8/8=1

=>FA=3cm; FC=5cm

b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

29 tháng 3 2016

2)

b) theo câu a thì ta có  góc BEH = góc AFB

                                       mà góc BEH = góc AEF 

                                  \(\Rightarrow\) Tam giác AEF cân tại A 

c) Xét tam giác ABH có BE  là tia phân giác của góc ABH 

\(\Rightarrow\frac{EH}{EA}=\frac{BH}{BA}\)                 (1)

 lại có tam giác ABH đồng dạng vs tam giác CBA ( g.g )

\(\Rightarrow\frac{BH}{BA}=\frac{BA}{BC}\)                 (2)

Từ (1) và (2) \(\Rightarrow\) \(\frac{EH}{EA}=\frac{BA}{BC}\left(=\frac{BH}{BA}\right)\)    (3)

Có :    BF là tia phân giác của tam giác ABC 

       \(\Rightarrow\) \(\frac{BA}{BC}=\frac{FA}{FC}\)      (4)

Từ (3) và (4) \(\Rightarrow\frac{EH}{EA}=\frac{FA}{FC}\)   \(\Leftrightarrow\) \(EH.FC=FA.EA\)

    

29 tháng 3 2016

1) BC =13 ;AH=4,615384615

2a) Xét tam giác ABF và HBE có

      BAF=BHE(góc vuông|)

      ABF=HBE(BF là phân giác) 

                CÒN LẠI MIK CHỊU SORRY NHA

14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn