K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

Ta có I CA+AB I = I CB I =CB

Xét tam giác ABC ( A=90 ) áp dụng định lý pytago có

CB^2 = AB^2 + AC^2 = 9+16=25 => CB=5.

Vậy I CA+AB I= I CB I =5

 

 

 

 

 

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Bạn lưu ý lần sau gõ lời giải bằng công thức toán (biểu tượng \(\sum\) góc trái khung soạn thảo) để được tick dễ dàng hơn khi làm đúng nhé.

 

NV
3 tháng 5 2021

a.

\(P=cos120^0+cos120^0+cos120^0=-\dfrac{3}{2}\)

b.

\(A=\dfrac{\dfrac{sinx}{cosx}-\dfrac{cosx}{cosx}}{\dfrac{sinx}{cosx}+\dfrac{cosx}{cosx}}=\dfrac{tanx-1}{tanx+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)

c.

\(A=\dfrac{cos\left(720+30\right)+sin\left(360+60\right)}{sin\left(-360+30\right)-cos\left(-360-30\right)}=\dfrac{cos30+sin60}{sin30-cos30}=-3-\sqrt{3}\)

27 tháng 2 2016

Do tam giác ABC vuông tại A và \(\widehat{B}=30^o\) \(\Rightarrow C=60^o\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=150^o;\)\(\left(\overrightarrow{BA},\overrightarrow{BC}\right)=30^o;\left(\overrightarrow{AC},\overrightarrow{CB}\right)=120^o\)

\(\left(\overrightarrow{AB},\overrightarrow{AC}\right)=90^o;\left(\overrightarrow{BC},\overrightarrow{BA}\right)=30^o\).Do vậy:

a) \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)+\sin\left(\overrightarrow{BA},\overrightarrow{BC}\right)+\tan\frac{\left(\overrightarrow{AC},\overrightarrow{CB}\right)}{2}\)

\(=\cos150^o+\sin30^o+\tan60^o\)

\(=-\frac{\sqrt{3}}{2}+\frac{1}{2}+\sqrt{3}\)

\(=\frac{\sqrt{3}+1}{2}\)

b) \(\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)+\cos\left(\overrightarrow{BC},\overrightarrow{AB}\right)+\cos\left(\overrightarrow{CA},\overrightarrow{BA}\right)\)

\(=\sin90^o+\cos30^o+\cos0^o\)

\(=1+\frac{\sqrt{3}}{2}\)

\(=\frac{2+\sqrt{3}}{2}\)

25 tháng 8 2021

Vì AH=(BC.1/2)tan60 ct lương giác

=BC.tan60.1/2=\(\sqrt{3}\)/2

họk tốt!

 

Chọn C

14 tháng 9 2021

|5BC|

NV
14 tháng 9 2021

\(T=\left|2\overrightarrow{AB}+3\overrightarrow{AC}\right|\Rightarrow T^2=\left(2\overrightarrow{AB}+3\overrightarrow{AC}\right)^2\)

\(\Rightarrow T^2=4AB^2+9AC^2+12\overrightarrow{AB}.\overrightarrow{AC}\)

\(=4a^2+9a^2+12.a.a.cos60^0=19a^2\)

\(\Rightarrow T=a\sqrt{19}\)

30 tháng 3 2017

Giải bài 6 trang 27 sgk Hình học 10 | Để học tốt Toán 10

Gọi M là trung điểm của BC

Xét ΔABC có AM là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\cdot\overrightarrow{AM}\)

\(\Leftrightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)

\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)