Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A;áp dụng pitago ta có : BC2 = 202+152=625
suy ra : BC= \(\sqrt{625}\) =25
Xét tam giác :\(\Delta abc\)và \(\Delta ahc\)ta có :
\(\widehat{c}\) ( góc chung)
\(\widehat{ahc}\)= \(\widehat{bac}\) = 90 độ
vậy \(\Delta ABC\)đồng dạng với \(\Delta AHC\)( g-g)
suy ra : \(\frac{15}{25}\)= \(\frac{AH}{20}\)
vậy AH= 12 cm \(\left(ĐPCM\right)\)
B) ta có :áp dụng pitago ta có: BH^2 = 15^2-12^2=81 cm
vậy BH =\(\sqrt{81}\)=\(9\)cm
áp dụng đường phân giác trong tam giác ta lại có
\(\frac{DH}{DB}\)= \(\frac{15}{12}\)
\(_{_{ }\Leftrightarrow}\)\(\frac{9-DB}{DB}\) = \(\frac{15}{12}\)
\(\Leftrightarrow\) \(\left(9-DB\right)\)\(_{\times}\) \(12\)= \(15\times DB\)
\(\Leftrightarrow\) 108 -12DB=15DB
\(\Leftrightarrow\) 108 = 15DB+12DB
\(\Rightarrow\)DB=4 cm \(\left(ĐPCM\right)\)
DH= BH - BD= 9 - 4=5 \(\left(ĐPCM\right)\)
phần C mình gửi sau nhé bạn xin lỗi nhé ^_^
\(GIẢI\)\(TIEP\)
ta có : \(\widehat{HCF}\)= \(\widehat{CHA}\) =\(90\)độ ( giả thiết)
mà hai góc này lại ở vị trí sole trong suy ra :HA song song với CF
suy ra: \(\widehat{CFH}\)= \(\widehat{AHF}\) ( HAI GÓC SOLE TRONG )
\(\widehat{FCA}\) =\(\widehat{HAC}\)( HAI GÓC SOLE TRONG )
TỪ hai điều trên suy ra : \(\widehat{CMF}\)= \(\widehat{HMA}\)
mà hai góc này lại ở vị trí đối đỉnh của CA và HF suy ra:
HMF thẳng hàng
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC