Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến
Suy ra BH=CH
Xét ∆AHB và ∆AHC có
AH là cạnh chung
BH=CH (cmt)
AB=AC (∆ABC cân tại A)
Do đó ∆AHB=∆AHC
Xét ∆AMH ta có
AD vuông góc với MH (HD vuông góc AB)
Suy ra AD là đường cao của ∆AMH (1)
DH=DM (gt)
Nên AD là đường trung bình của ∆AMH (2)
Từ (1) và (2) suy ra ∆AMH cân tại A
Suy ra AM=AH
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
a) Vì A là góc vuông
=> A1 = A2 = A / 2= 90* / 2= 45*
Vì D1 = A2 = 45* ( ở vị trí so le trong)
=> AB // DK
a: góc C=90-60=30 độ<góc B
=>AB<AC
=>HB<HC
b: Xet ΔAHB vuông tại H và ΔAHM vuông tại H có
AH chung
HB=HM
=>ΔAHB=ΔAHM
=>AB=AM
mà góc B=60 độ
nên ΔAMB đều
a: Xét tứ giác ABDM có
H là trung điểm chung của AD và BM
nên ABDM là hình bình hành
Suy ra: AB=DM và AB//DM
b: Xét ΔADC có
CH là đường cao
DM là đường cao
CH cắt DM tại M
Do đó: M là trực tâm
=>AM vuông góc với CD