K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDM có

H là trung điểm chung của AD và BM

nên ABDM là hình bình hành

Suy ra: AB=DM và AB//DM

b: Xét ΔADC có

CH là đường cao

DM là đường cao

CH cắt DM tại M

Do đó: M là trực tâm

=>AM vuông góc với CD

14 tháng 4 2022

a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến

Suy ra BH=CH

Xét ∆AHB và ∆AHC có

AH là cạnh chung

BH=CH (cmt)

AB=AC (∆ABC cân tại A)

Do đó ∆AHB=∆AHC

Xét ∆AMH ta có

AD vuông góc với MH (HD vuông góc AB)

Suy ra AD là đường cao của ∆AMH (1)

DH=DM (gt)

Nên AD là đường trung bình của ∆AMH (2)

Từ (1) và (2) suy ra ∆AMH cân tại A

Suy ra AM=AH

2 tháng 3 2022

Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)

b.Xét tam giác vuông ABH và tam giác vuông ADH, có:

HD = HB ( gt )

AH: cạnh chung

Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )

=> AB = AD ( 2 cạnh tương ứng )

26 tháng 7 2017

a) Vì A là góc vuông

=> A1 = A2 = A / 2= 90* / 2= 45*

  Vì D1 = A2 = 45* ( ở vị trí so le trong)

=> AB // DK

10 tháng 5 2023

làm như kiểu này nè... xem thêm

 

a: góc C=90-60=30 độ<góc B

=>AB<AC

=>HB<HC

b: Xet ΔAHB vuông tại H và ΔAHM vuông tại H có

AH chung

HB=HM

=>ΔAHB=ΔAHM

=>AB=AM

mà góc B=60 độ

nên ΔAMB đều