K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2019

Ta có : AD = AC 

\(\Rightarrow\)\(\Delta\)ADC vuông cân tại A

\(\Rightarrow\)Góc ACD = ( 180° - CÂD ) ÷ 2

\(\Rightarrow\)Góc ACD = ( 180° - 90° ) ÷ 2

\(\Rightarrow\)Góc ACD = 45°

Vậy : Góc ACD = 45°

23 tháng 12 2019

Thi toán chưa bạn. cho mk xin đề

b: Xét ΔAEC và ΔAED có 

AC=AD

\(\widehat{CAE}=\widehat{DAE}\)

AE chung

Do đó: ΔAEC=ΔAED

Suy ra: EC=ED

25 tháng 11 2018

a) Ta có : 

AD=AC (gt) suy ra tam giác ADC là tam giác cân tại góc DAC , suy ra góc ACD =góc ADC (tc)

Theo đấu bài ta có : góc A = 90 độ, suy ra góc ACD = (180 - 90 ) .1/2 = 45 độ

b) Xét tam giác ADE và tam giác ACE có : 

AE chung , AC=AD (gt) , DAE=CAE(AE là p/g của góc DAC)

từ đó, suy ra : 2 tam giác bằng nhau với trường hợp (c.g.c)

vậy DE=CE (đpcm)

c) có AE là phân giác góc DAC, mà tam giác DAC là tam giác vân thì : AE là đường cao (tc)

25 tháng 11 2018

bạn có thể giải theo cách học kì 1 lớp 7 đc k ?

22 tháng 3 2022

a) Xét tam giác ABD và tam giác AHD có:

AB = AH ( gt )

^BAD = ^CAD ( Do AD phân giác  )

AD chung 

=> Tam giác ABD = tam giác AHD ( c.g.c )

=> ^ABD = ^AHB ( hai góc tương ứng )

b) Xét tam giác AHE và tam giác ABC có:

AB = AH ( gt )

^ABC chung

^ABD = ^AHD ( cmt )

=> Tam giác AHE = tam giác ABC ( g.c.g )

22 tháng 3 2022

Ôi cảm ơn bạn nhé mừng quá

3 tháng 1 2022

 a, Xét ΔABI và ADI ta có 

AI là cạnh chung

A1^ = A2^ 

AB = AD (gt)

⇒ 2 tam giác trên bằng nhau

⇒ IB = ID ( cạnh tương ứng)

b, Ta có BIE^=DIC^ (đối đỉnh)

⇒ AIE^ = AIB^ + BIE^  = AID^ +AIC^ 

Xét ΔAIE VÀ AIC

EAI^=CAI^ =45

chung Ai

⇒ 2 tam giác bằng nhau

⇒ AC = AE

31 tháng 8 2021

Gọi giao điểm của AD và BE là O.

Xét tam giác AEO và tam giác ABO,có:

             AE=AB  (gt)

       Góc EAO=Góc BAO (gt)

        AO là cạnh chung

=> Tam giác AEO=Tam giác ABO (c.g.c)

    =>Góc AOE= Góc ABO (2 góc tương ứng)

Ta có:  Góc AOE + Góc AOB=180o  (2 góc bù nhau)

       Mà Góc AOE=Góc AOB  (cmt)

           => Góc AOE = 90o

    => AD⊥BE tại O