Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm của BC, ta có:
AM = MB = 1/2 BC = a (tính chất tam giác vuông)
Suy ra MA = MB = AB = a
Suy ra ∆ AMB đều ⇒ ∠ (ABC) = 60 0
Mặt khác: ∠ (ABC) + ∠ (ACB) = 90 0 (tính chất tam giác vuông)
Suy ra: ∠ (ACB) = 90 0 - ∠ (ABC) = 90 0 – 60 0 = 30 0
Trong tam giác vuông ABC, theo Pi-ta-go, ta có: B C 2 = A B 2 + A C 2
⇒ A C 2 = B C 2 - A B 2 = 4 a 2 - a 2 = 3 a 2 ⇒ AC = a 3
Vậy S A B C = 1/2 .AB.AC
= 1 2 a . a 3 = a 2 3 2 ( đ v d t )
Bài 6:
a: Xét tứ giác AKDH có
\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)
Do đó: AKDH là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=2,5(cm)
a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)
b, áp dụng đl pytago vào tam giác vuông ABC có :
\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)
vì AD là trung tuyến tam giác vuông ABC nên :
\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)
c,vì AKDH là hình chữ nhật nên : DH//KA
mà D là trung điểm BC
=>H là trung điểm AC
<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\)
vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)
\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
S B C D E = B C 2 = 2 a 2 = 4 a 2 (dvdt)
Trong tam giác vuông BHA, theo Pi-ta-go, ta có: A H 2 + B H 2 = A B 2
⇒ B H 2 = A B 2 - A H 2 = a 2 - a 2 / 4 = 3 a 2 / 4 ⇒ BH = (a 3 )/2
S A B F = 1/2 BH.FA =
Trong tam giác vuông AKG, theo Pi-ta-go, ta có: A C 2 = A K 2 + K C 2
⇒ A K 2 = A C 2 - K C 2 = 3 a 2 - 3 a 2 / 4 = 9 a 2 / 4 ⇒ AK = 3a/2 (đvdt)
S A C G = 1/2 AK.CG =
S D E F G = S B C D E + S F B E + S FAB + S F A G + S A C G + S A B C
Lời giải:
a) Xét tam giác $ABC$ và $DEC$ có:
$\widehat{C}$ chung
$\widehat{BAC}=\widehat{EDC}=90^0$
$\Rightarrow \triangle ABC\sim \triangle DEC$ (g.g)
b) Xét tam giác $DEC$ và $DBF$ có:
$\widehat{EDC}=\widehat{BDF}=90^0$
$\widehat{DEC}=\widehat{DBF}(=90^0-\widehat{C})$
$\Rightarrow \triangle DEC\sim \triangle DBF$ (g.g)
$\Rightarrow \frac{DE}{DC}=\frac{DB}{DF}$
$\Rightarrow DE.DF=DB.DC$ (đpcm)