Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi giao MF voi ABla H , giao ME voi AC la K, MD voi BC la I
Do tam giac ABC noi tiep (O) ma M thuoc (o) nen ABMC noi tiep
xet tam giac MDF co \(\hept{\begin{cases}H.la.trung.diem.MF\\I.la.trung.diem.DM\end{cases}\Rightarrow HI//DF}\) (1)
tuong tu cung co \(IK//ED\) va \(HK//EF\) ( do tinh chat duong trung binh) (2)
Xet tu giac HBIM co \(\widehat{BHM}+\widehat{BIM}=90+90=180^o\)
=> HBIM la tu giac noi tiep => \(\widehat{HIB}=\widehat{BMH}\) (cung chan \(\widebat{BH}\) ) (4)
tuong tu cung chung minh duoc tu giac MIKC la tu giac noi tiep => \(\widehat{KIC}=\widehat{KMC}\left(cung.chan.\widebat{KC}\right)\)(3)
Lai co \(\widehat{HBM}=\widehat{MAH}+\widehat{AMB}\) (tinh chat goc ngoai)
va \(\widehat{MCK}=\widehat{MCB}+\widehat{ACB}\)
ma ABMC noi tiep suy ra \(\hept{\begin{cases}\widehat{AMB}=\widehat{ACB}\\\widehat{MAB}=\widehat{MCB}\end{cases}}\)
=> \(\widehat{MHB}=\widehat{MCK}\)
xet tam giac MHB va tam giac MKC co
\(\widehat{H}=\widehat{K}=90\)
\(\widehat{MHB}=\widehat{MCK}\) (cmt)
=> \(\widehat{HMB}=\widehat{KMC}\) (5)
tu (3),(4),(5) =>\(\widehat{HIB}=\widehat{KIC}\)
=> H,I,K thang hang (6)
tu (1),(2),(6)
suy ra F,D,E thang hang ( tien de Oclit)
chuc ban hoc tot
a: góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b: Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
a. góc CDM=góc CEM=90 độ
=>CDEM nội tiếp
b. Xet ΔMEA vuông tại E và ΔMDB vuông tại D có
góc EMA chung
=>ΔMEA đồng dạng với ΔMDB
=>ME/MD=MA/MB
=>ME*MB=MA*MD
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
a: góc CEM+góc CDM=180 độ
=>CEMD nội tiếp
b: góc EDM=góc ECM
góc FDM=góc FBM=góc ABM
=>góc EDF=góc ACM+góc ABM=60 độ
a/
D và E cùng nhìn MC dưới 1 góc vuông -> CDME là tứ giác nội tiếp
b/
CM tương tự ta cũng có tứ giác BDMF là tứ giác nội tiếp
\(\Rightarrow\widehat{MBF}=\widehat{MDF}\) (góc nt cùng chắn cung MF) (1)
Xét tứ giác nt CDME có
\(\widehat{MCE}=\widehat{MDE}\) (góc nt cùng chắn cung MF) (2)
Từ (1) và (2) \(\Rightarrow\widehat{MBF}+\widehat{MCE}=\widehat{MDF}+\widehat{MDE}=\widehat{EDF}\) (3)
Xét \(\Delta ABC\) có
AB=AC (Hai tiếp tuyến cùng xp từ 1 điểm)
=> \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{xAy}}{2}=\dfrac{180^o-60^o}{2}=60^o\)
Ta có
\(sđ\widehat{ABC}=\dfrac{1}{2}sđ\) cung BC => sđ cung BC = 2.sđ \(\widehat{ABC}=2.60^o=120^o\)
=> sđ cung BM + sđ cung CM = sđ cung BC \(=120^o\)
Ta có
\(sđ\widehat{MBF}=\dfrac{1}{2}sđ\) cung BM (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{MCE}=\dfrac{1}{2}sđ\) cung CM (góc giữa tiếp tuyến và dây cung)
\(\Rightarrow sđ\widehat{MBF}+sđ\widehat{MCE}=sđ\widehat{EDF}=\dfrac{sđcungBM+sđcungCM}{2}=\dfrac{sđcungBC}{2}=\dfrac{120^0}{2}=60^o\)
c/
Xét tg vuông MBF và tg vuông MCD có
\(sđ\widehat{MBF}=\dfrac{1}{2}sđcungBM\) (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{MCD}=\dfrac{1}{2}sđcungBM\) (góc nt)
\(\Rightarrow\widehat{MBF}=\widehat{MCD}\) => tg MBF đồng dạng với tg MCD
\(\Rightarrow\dfrac{MF}{MD}=\dfrac{MB}{MC}\)
CM tương tự ta cũng có tg vuông MCE đồng dạng với tg vuông MBD
\(\Rightarrow\dfrac{ME}{MD}=\dfrac{MC}{MB}\Rightarrow\dfrac{MD}{ME}=\dfrac{MB}{MC}\)
\(\Rightarrow\dfrac{MF}{MD}=\dfrac{MD}{ME}\Rightarrow MD^2=ME.MF\left(đpcm\right)\)
Tham khảo
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-nhon-noi-tiep-duong-tron-o-tren-canh-bc-lay-diem-d-sao-cho-abc-cad-k-la-duong-tron-noi-tiep-tam-giac-adc-e-la-chan-duong-p.205346682394
Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)
Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)
D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp
\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)
Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp
\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)
\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng
Hình vẽ: